
Whiley Cheat Sheet

By David J. Pearce, 2014. See http://whiley.org

Values
Values are the fundamental units of execution in Whiley and
have value semantics, rather than reference semantics (as in
many object-oriented languages).

null Null value

true false Boolean values

123 -99 0xFF Integer values

"Hello" "new\n line" String values

[1,2,3] [1,"xyz"] Array values

{name: "dave"} , {x: 1, y: 0} Record values

Types
The Whiley programming language is statically typed, mean-
ing that every expression has a type determined at compile
time. Furthermore, evaluating an expression is guaranteed
to yield a value of its type.

null bool int Primitive types

int|null bool|int Union types

(int,int) (int,null,bool) Tuple types

int[] bool[][] (int|null)[] Array types

{bool f} {int len, int[] is} Record types

&int &this:List &l:{int f} Reference types

Expressions
The majority of work performed by a Whiley program is
through the execution of expressions. Every expression pro-
duces a value and may have additional side effects.

x + 1 2 * y z - 1 (x + y)/2 Arithmetic

x < y 0 >= z x == y x != y Comparisons

!x x&&y x||y x==>y x<==>y Boolean

|ls| ls[0] [true; n] [1,x+y] Arrays

{x: 1+y} xr.f xr.f.g Records

new {x: 1} *ptr ptr->f References

all { i in 0..|xs| | xs[i]>= 0} Quantifiers

some { i in 0..|xs| | xs[i]>=0 }

x is null x is int Type Tests

Statements
The execution of a Whiley program is controlled by state-
ments, which cause effects on the environment. Statements
in Whiley do not produce values. Compound statements
may contain other statements.

Variables are declared and initialised through variable
declarations. Variables must be declared before being used.

int x int x = 1 int x, int y

Variables, fields and map or list elements can be as-
signed. Variables must be defined before being used.

x = x + y x[0] = 1 r.f = 3 x,y = t

Conditional statements control the flow of execution based
on the result of a boolean expression.

if x < 0:
...

...

if x < 0:
...

else:
...

if x < 0:
...

else if x > 0:
...

Looping statements control the flow of execution by re-
peating some sequence of statements zero or more times.

while x<0:
...

...

do:
...

while x<0
...

Switch statements control execution flow by matching
the result of an expression.

switch x:
case 1:

x = x + 1
case 1,2:

x = 0
...

switch x:
case 1:

x = x + 1
default:

x = 0
...

Return statements terminate the execution of a function
or method and may return the result of an expression.

return return x + 3 return x,y

Assertion and assumption statements enable the program-
mer to express knowledge at a given point.

assert x > 0 assume x > 0 ==> y < 3

Break statements terminate loops early; debug statements
enable output from functions; skip statements are a no-op.

break debug "got here" skip



Declarations
A declaration declares a named entity within a source file
and may refer to named entities in this or other source files
and (in some cases) may recursively refer to itself.

Constant declarations define constants with known val-
ues at compile-time (they cannot be recursively defined).

constant TEN is 10
constant TWENTY is TEN * 2

Type declarations define named types composed from
other types (they may be recursively defined).

type Point is { int x, int y }

type Link is { LinkedList next, int data }
type LinkedList is null | Link

Function declarations define functions which are pure
and may not have side-effects. They are guaranteed to re-
turn the same result given the same arguments, and are per-
mitted within specifications.

function find(int[] xs, int x) -> int:
...

Method declarations define methods which are impure
and may have side-effects. They cannot be used within
specifications.

method main(System.Console console):
console.out.println("Hello World")

Specifications
A precondition is a condition over the parameters of a func-
tion that must hold when the function is called. A post-
condition is a condition over the return values of a function
which is required to be true after the function is called.

function decrement(int x) -> (int y)
// Parameter x must be greater than zero
requires x > 0
// Return must be greater or equal to zero
ensures y >= 0
// Return must be less than input
ensures y < x:

//
return x - 1

A data-type invariant is a constraint on the values of a
declared type which must be true for any instance of it.

type nat is (int n) where n >= 0
type pos is (int p) where p > 0

A loop invariant is a property which holds before and
after each iteration of the loop, such that: (1) the loop in-
variant must hold on entry to the loop; (2) assuming the loop
invariant holds at the start of the loop body (along with the
condition), it must hold at the end; (3) the loop invariant
(along with the negated condition) can be assumed to hold
immediately after the loop.

...
int i = 0
while i < x where i >= 0:

i = i + 1
...

Examples
The following function computes the maximum value of
two integer parameters.

function max(int x, int y) -> (int z)
// must return either x or y
ensures x == z || y == z
// return must be as large as x and y
ensures x <= z && y <= z:

// implementation
if x > y:

return x
else:

return y

The following function uses a break to exit a while
loop when the first element matching parameter x is found.

// Find index of matching element, or return -1
function indexOf(int[] xs, int x) -> int:
int i = 0
//
while i < |xs| where i >= 0:

if xs[i] == x:
return i

i = i + 1
return -1

The following function computes the length of a linked
list.

// A linked list is either the empty list or a link
type LinkedList is null | Link
// A single link in a linked list
type Link is {int data, LinkedList next}

// Return length of linked list (i.e. number of links it contains)
function length(LinkedList l) -> int:
if l is null:

// l now has type null
return 0

else:
// l now has type {int data, LinkedList next}
return 1 + length(l.next)

The following function reverses the values in a list of
integers.

function reverse(int[] xs) -> (int[] ys)
// size of lists are the same
ensures |xs| == |ys|:

int i = 0
int[] zs = xs
//
while i<|xs| where i>=0 && |xs|==|zs|:

int j = |xs| - (i+1)
xs[i] = zs[j]
i = i + 1

return xs


