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Chapter 1

Introduction

This document provides a specification of the Whiley Programming Language. Whiley
is a hybrid imperative and functional programming language designed to produce
programs with as few errors as possible. Whiley allows explicit specifications to be
given for functions, methods and data structures, and employs a verifying compiler
to check whether programs meet their specifications. For example, Whiley would
be ideally suited for use in safety critical systems. However, there are many benefits
to be gained from using Whiley in a general setting (e.g. improved documentation,
maintainability, reliability, etc). Finally, this document is not intended as a general
introduction to the language, and the reader is referred to alternative documents for
learning the language [1].

1.1 Background

Reliability of large software systems is a difficult problem facing software engineering,
where subtle errors can have disastrous consequences. Infamous examples include:
the Therac-25 disaster where a computer-operated X-ray machine gave lethal doses to
patients [2]; the 1988 worm which reeked havoc on the internet by exploiting a buffer
overrun [3]; the 1991 Patriot missile failure where a rounding error resulted in the mis-
sile catastrophically hitting a barracks [4]; and, the Ariane 5 rocket which exploded
shortly after launch because of an integer overflow, costing the ESA an estimated $500
million [5].

Around 2003, Hoare proposed the creation of a verifying compiler as a grand chal-
lenge for computer science [6]. A verifying compiler “uses automated mathematical and
logical reasoning to check the correctness of the programs that it compiles.” There have
been numerous attempts to construct a verifying compiler system, although none has
yet made it into the mainstream. Early examples include that of King [7], Deutsch [8],
the Gypsy Verification Environment [9] and the Stanford Pascal Verifier [10]. More re-
cently, the Extended Static Checker for Modula-3 [11] which became the Extended Static
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Checker for Java (ESC/Java) — a widely acclaimed and influential work [12]. Building
on this success was JML and its associated tooling which provided a standard nota-
tion for specifying functions in Java [13]. Finally, Microsoft developed the Spec# system
which is built on top of C# [14].

1.2 Goals

The Whiley Programming Language has been designed from scratch in conjunction
with a verifying compiler. The intention is to provide an open framework for research
in automated software verification. The initial goal is to automatically eliminate com-
mon errors, such as null dereferences, array-out-of-bounds, divide-by-zero and more. In the
future, the intention is to consider more complex issues, such as termination, proof-
carrying code and user-supplied proofs.

1.3 History

Development of the Whiley programming language begun in 2009 by Dr. David J.
Pearce, at the time a lecturer in Computer Science at Victoria University of Welling-
ton. The accompanying website http://whiley.org went live in 2010, making
the first versions of Whiley available for download. Since then, Whiley has been in
constant development with the majority of contributions being made by the original
author. Several scientific papers have published on different aspects of the language,
including:

• Implementing a Language with Flow-Sensitive and Structural Typing on the
JVM. David J. Pearce and James Noble. In Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE), 2011.

• Sound and Complete Flow Typing with Unions, Intersections and Negations,
David J. Pearce. In Proceedings of the Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI), pages 335–354, 2013

• A Calculus for Constraint-Based Flow Typing. David J. Pearce. In Proceedings of
the Workshop on Formal Techniques for Java-like Languages (FTFJP), Article 7, 2013.

• Whiley: a Platform for Research in Software Verification. David J. Pearce and
Lindsay Groves. In Proceedings of the Conference on Software Language Engineering
(SLE), pages 238-–248, 2013

• Reflections on Verifying Software with Whiley. David J. Pearce and Lindsay
Groves. In Proceedings of the Workshop on Formal Techniques for Safety-Critical Soft-
ware (FTSCS), 2013
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• The Whiley Rewrite Language (WyRL). David J. Pearce. In Proceedings of the
Conference on Software Language Engineering (SLE), (to appear), 2015

• Some Usability Hypotheses for Verification. David J. Pearce. In Proceedings of
the Workshop on Evaluation and Usability of Programming Languages (PLATEAU),
(to appear), 2015

• Integer Range Analysis for Whiley on Embedded Systems. David J. Pearce.
In Proceedings of the IEEE/IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems, (to appear), 2015.

• Designing a Verifying Compiler: Lessons Learned from Developing Whiley.
David J. Pearce and Lindsay Groves. In Science of Computer Programming, (to
appear), 2015
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Chapter 2

Lexical Structure

This chapter specifies the lexical structure of the Whiley programming language. Pro-
grams in Whiley are organised into one or more source files written in Unicode. The
Whiley language uses indentation syntax to delimit blocks and statements, rather than
curly-braces (or similar) as found in many other languages.

2.1 Line Terminators

A Whiley compiler splits the sequence of (Unicode) input characters into lines by iden-
tifying line terminators:

LineTerminator ::= \n | \r | \r \n

Here, \n represents the ASCII character LF (0xA), whilst \r represents the

ASCII character CR (0xD). The two characters \r \n taken together form one line
terminator.

2.2 Indentation

After splitting the input characters into lines, a Whiley compiler then identifies the
indentation of each line. This is necessary because Whiley employs indentation syntax
meaning that indentation is significant in the meaning of Whiley programs.

Indentation ::= ˆ
(
\t |

)∗
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Here, ˆ demarcates the start of a line and, hence, indentation may only occur at the
beginning of a line. Indentation may be compared using the ≤ comparator, such that
i ≤ ir always holds (where i is some indentation and r is either empty or represents
additional indentation). In other words, some indentation i is considered less-than-
or-equal to another piece of indentation ir which includes the first as a prefix. This
comparator is important for delimiting statement blocks (§5.1).

2.3 Comments

There are two kinds of comments in Whiley: line comments and block comments:

1 /* This is a block comment */

The above illustrates a block comment, which is all of the text between /* and */

inclusive.

1 // This is a line comment

The above illustrates a line comment, which is all of the text from // up to the end-

of-line.

2.4 Identifiers

An identifier is a sequence of one or more letters or digits which starts with a letter.

Ident ::= _Letter
(
_Letter | Digit

)
*

_Letter ::= _ | Letter

Letter ::= a | . . . | z | A | . . . | Z

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Letters include lowercase and uppercase alphabetic characters (i.e. a-z and A-Z)
and the underscore (_).

2.5 Keywords

The following strings are reserved for use as keywords and may not be used as identi-
fiers:

12



Keyword ::= all | any | assert | assume | bool | break | byte

| case | catch | continue | debug

| default | do | else | ensures | export | false

| fail | final | finite | for | function | if | import

| in | int | is | method | native | new | no | null

| package | private | protected | public | requires

| return | skip | some | switch | throw | this

| throws | total | true | try | void | where | while

The following strings are reserved for use as keywords, but may additionally be
used as identifiers in certain contexts:

KeywordIdentifier ::= constant | from | type

2.6 Literals

A literal is a source-level entity which describes a value of primitive type (§4.3).

Literal ::= NullLiteral

| BoolLiteral

| BinaryLiteral

| IntLiteral

| HexLiteral

| CharacterLiteral

| StringLiteral

2.6.1 Null Literal

The null type (§4.3.1) has a single value expressed as the null literal.
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NullLiteral ::= null

2.6.2 Boolean Literals

The bool type (§4.3.2) has two values expressed as the true and false literals.

BoolLiteral ::= true | false

2.6.3 Binary Literals

The byte type (§4.3.3) has 256 values which are expressed as sequences of binary dig-
its, prefixed with “0b” (e.g. 0b0101, 0b1111_0101, etc).

BinaryLiteral ::= 0 b
(
0 | 1 | _

)
+

Binary literals do not need to contain exactly eight digits and, when fewer digits are
given, are padded out to eight digits by appending zero’s from the left (e.g. 0b00101
becomes 0b00000101).

2.6.4 Integer Literals

An integer literal is a sequence of numeric digits (e.g. 123456, etc) corresponding to a
value of int type (§4.3.4).

IntLiteral ::=
(
0 | . . . | 9 | _

)
+

Since integer values in Whiley are of arbitrary size (§4.3.4), there is no limit on the
size of an integer literal.

2.6.5 Hexadecimal Literals

A hexadecimal literal is a sequence of hexadecimal digits (e.g. 0xffaf, etc) correspond-
ing to a value of int type (§4.3.4).
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HexLiteral ::= 0 x
(
0 | . . . | 9 | a | . . . | f | A | . . . | F | _

)
+

Since integer values in Whiley are of arbitrary size (§4.3.4), there is no limit on the
size of a hexadecimal literal.

2.6.6 Character Literals

A character literal is expressed as a single character or an escape sequence enclosed in
single quotes (e.g. ’c’). Character literals generate integer constants corresponding
to Unicode code points, which is necessary because there is no native character type.

CharacterLiteral ::= ’
(
Character –

(
\ | ’

)
| CharacterEscape

)
’

CharacterEscape ::= \
(
\ | t | n | ’

)
Character ::= Letter | Digit | Symbol

2.6.7 String Literals

A string literal is expressed as a sequence of zero or more characters or escape se-
quences enclosed in double quotes (e.g. "Hello World"). String literals generate lists
of integers corresponding to Unicode code points, which is necessary as there is no
native string type.

StringLiteral ::= "
(
Character–

(
\ | "

)
| StringEscape

)∗ "

StringEscape ::= \
(
\ | t | n | "

)

15
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Chapter 3

Source Files

Whiley programs are split across one or more source files which are compiled into
WyIL files prior to execution. Source files contain declarations which describe the
functions, methods, data types and constants which form the program. Source files
are grouped together into coherent units called packages.

3.1 Compilation Units

Two kinds of compilation unit are taken into consideration when compiling a Whiley
source file: other source files; and, binary WyIL files. The Whiley Intermediate Lan-
guage (WyIL) file format is described elsewhere, but defines a binary representation
of a Whiley source file.

SourceFile ::=
[
PackageDecl

](
ImportDecl

| (Modifier)∗ TypeDecl

| (Modifier)∗ StaticVarDecl

| (Modifier)∗ FunctionDecl

| (Modifier)∗ MethodDecl)∗
When one or more Whiley source files are compiled together, a compilation group is

formed. External symbols encountered during compilation are first resolved from the
compilation group, and then from previously compiled WyIL files.

3.2 Packages

Programs in Whiley are organised into packages to help reduce name conflicts and
provide some grouping of related concepts. A Whiley source file may provide an

17



optional package declaration to identify the package it belongs to. This declaration
must occur at the beginning of the source file.

PackageDecl ::= package Ident
(
. Ident

)∗

Any source file which does not provide a package declaration is considered to be
in the default package.

3.3 Names

There are four functional entities which can be defined within a Whiley source file:
type declarations (§3.5.2), constant declarations (§3.5.3), function declarations (§3.5.4) and
method declarations (§3.5.5). These define named entities which may be referenced from
other compilation units. Every named entity has a unique fully-qualified name con-
structed from the enclosing package name, the source file name and the declared
name. For example:

Graphics.whiley

1 package g2d

2

3 type Point is { int x, int y }

4

5 constant Origin is { x: 0, y: 0 }

This declares two entities: g2d.Graphics.Point and g2d.Graphics.Origin.
Two named entities may clash if they have the same fully qualified name and are in the
same category. There are three entity categories: types, constants and functions/methods.
The following illustrates a common pattern:

1 type Point is { int x, int y }

2

3 function Point(int x, int y) -> Point:

4 return {x: x, y: y}

Here, two named entities share the same fully qualified named. This is permitted
because they are in different categories.

Two named entities in the same category with different types are permitted in some
circumstances, and this is referred to as overloading. Currently, overloading is only
supported for entities representing function and methods or function and method
types.
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3.4 Imports

When performing name resolution, the Whiley compiler first attempts to resolve names
within the same source file. For any remaining unresolved, the compiler examines
imported entities in reverse declaration order. Entities are imported using an import

declaration:

ImportDecl ::= import
[
FromSpec

]
Ident

(
::

(
Ident | *

) )∗ [
WithSpec

]
FromSpec ::= * |

(
Ident

(
, Ident

)∗ )
from

WithSpec ::= with * |
(
Ident

(
, Ident

)∗ )

A declaration of the form “import a.pkg.File” imports the compilation unit
“File” in package “a.pkg”. Named entities (e.g. “Entity”) within that compilation
unit can then be referenced using a partially qualified name which omits the package
component (e.g. “File.Entity”).

A declaration of the form “import Entity from a.pkg.File” imports the named
entity “Entity” from the compilation unit “File” residing in package “a.pkg”. Note,
this does not import the compilation unit “a.pkg.File” (and, hence, does not sub-
sume the statement “import a.pkg.File”). In contrast, a declaration of the form
“import a.pkg.File with Entity” imports both “Entity” and the compilation unit
“a.pkg.File”.

A wildcard may be used in place of the compilation unit name to import all compi-
lation units within the given package (e.g. “import some.pkg.*”). A wildcard may be
used in place of the entity name (e.g. “import * from some.pkg.File”) to import
all named entities within the given compilation unit.

3.5 Declarations

A declaration defines a new entity within a Whiley source file and provides a name by
which it can be referred to within this source file, or from other source files.

3.5.1 Access Control

Several mechanisms for access control are provided through declaration modifiers.

Modifier ::= public | private | native | export | final
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• The public modifier declares that the declaration is visible from other Whiley
source files.

• The private modifier declares that the declaration is visible only within the
enclosing Whiley source file.

• The native modifier declares that the declaration is provided by the underlying
system.

• The export modifier declares that the declaration is visible to source files written
in other languages. Declarations with this modifier cannot be overloaded.

• The final modifier declares that the declaration cannot be reassigned.

When no modifier is given, the default of private is assumed.

Notes. The native and export modifiers together form the foreign function interface.
The restriction on declarations declared with the export modifier is to enable names
to be exported without name mangling.

3.5.2 Type Declarations

A type declaration declares a named type within a Whiley source file. The declaration
may refer to named types in this or other source files and may also recursively refer to
itself (either directly or indirectly).

TypeDecl ::= type Ident is
[
Type | ( Variable )

] (
where Expr

)∗
Variable ::= Type Ident

The optional where clause defines a boolean expression which holds for any instance
of this type. This is often referred to as the type invariant or constraint which ranges
over the declared variable (if provided).

Examples. Some simple examples illustrating type declarations are:

1 // Define a simple point type
2 type Point is { int x, int y }

3

4 // Define the type of natural numbers
5 type nat is (int x) where x >= 0

The first declaration defines an unconstrained record type named Point, whilst
the second defines a constrained integer type nat.
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Notes. A convention is that type declarations for records or unions of records begin
with an upper case character (e.g. Point above). All other type declarations begin
with lower case. This reflects the fact that records are most commonly used to describe
objects in the domain. All types are also required to be contractive. This means, for
example, that the declaration type X is X is considered invalid.

3.5.3 Static Variable Declarations

A static variable declaration declares a top-level variable within a Whiley source file with
an optional initialiser expression.

StaticVarDecl ::= Type Ident
[
= Expr

]

The given initialiser expression may not directly or indirectly refer to itself and may
only be omitted in conjunction with the native modifier. Initialiser expressions are
also pure and may not have side-effects (i.e. invoke methods or allocate on the heap).

Examples. Some simple examples to illustrate static variable declarations are:

1 // Define a well-known mathematical constant!
2 final int TEN = 10

3

4 // Define an initialised global variable
5 int height = TEN * 2

The first declaration defines the constant TEN to have the int value 10. The second
declaration defines a global variable initialised with the constant.

Notes. Since initialiser expressions across a compilation group form a directed acyclic
graph, static variables can always be safely initialised.

3.5.4 Function Declarations

A function declaration defines a function within a Whiley source file. Functions are
pure and may not have side-effects. This means they are guaranteed to return the
same result given the same arguments, and are permitted within specifications (i.e. in
type invariants, loop invariants, and function/method preconditions or postconditions).
Functions may call other functions, but may not call other methods. Functions may
not explicitly allocate memory on the heap and/or instigate concurrent computation.
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FunctionDecl ::= function Ident ( Parameters ) -> ( Parameters )(
requires Expr | ensures Expr

)∗ : Block

Parameters ::=
[
Variable

(
, Variable

)∗ ]

Those variables declared before “->” are referred to as the parameters, whilst those
declared afterwards are referred to as the returns. There are two kinds of optional
clause which follow:

• Requires clause(s). These define constraints on the permissible values of the
parameters on entry to the function, and are often collectively referred to as the
precondition. These expressions may refer to any declared parameters. Multi-
ple clauses may be given, and these are taken together as a conjunction. The
convention is to specify the requires clause(s) before any ensures clause(s).

• Ensures clause(s). These define constraints on the permissible values of the
function’s return value, and are often collectively referred to as the postcondi-
tion. These expressions may refer to any declared parameters or returns. Mul-
tiple clauses may be given, and these are taken together as a conjunction. The
convention is to specify ensures clause(s) after requires clause(s).

Examples. The following function declaration provides a small example to illustrate:

1 function max(int x, int y) -> (int z)

2 // return must be greater than either parameter
3 ensures x <= z && y <= z

4 // return must equal one of the parmaeters
5 ensures x == z || y == z:

6 // implementation
7 if x > y:

8 return x

9 else:
10 return y

This defines the specification and implementation of the well-known max() func-
tion which returns the largest of its parameters. This does not enforce any precondi-
tions on its parameters.

3.5.5 Method Declarations

A method declaration defines a method within a Whiley source file. Methods are im-
pure and may have side-effects. Thus, they cannot be used within specifications (i.e.
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in type invariants, loop invariants, and function/method preconditions or postcondi-
tions). However, unlike functions, methods may call other functions and/or methods
(including native methods). They may also explicitly allocate memory on the heap,
and/or instigate concurrent computation.

MethodDecl ::= method
[
LifetimeParameters

]
Ident

( Parameters )
[
-> ( Parameters )

]
(
requires Expr | ensures Expr

)∗ : Block

LifetimeParameters ::= < Ident
(
, Ident

)∗ >

Those variables declared before “->” are referred to as the parameters, whilst those
declared afterwards are referred to as the returns. The two optional clauses are defined
identically as for function declarations (§3.5.4).

Examples. The following method declaration provides a small example to illustrate:

1 // Define the well-known concept of a linked list
2 type LinkedList is null | &{ LinkedList next, int data }

3

4 // Define a method which inserts a new item onto the end of the list
5 method insertAfter(LinkedList list, int item) -> LinkedList:

6 if list is null:
7 // reached the end of the list, so allocate new node
8 return new { next: (LinkedList) null, data: item }

9 else:
10 // continue traversing the list
11 list->next = insertAfter(list->next, item)

12 return list
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Chapter 4

Types & Values

The Whiley programming language is statically typed, meaning that every expression
has a type determined at compile time. Furthermore, evaluating an expression is guar-
anteed to yield a value of its type. Whiley’s type system governs how the type of any
variable or expression is determined. Whiley’s type system is unusual in that it in-
corporates union types (§4.9), intersection types (§??) and negation types (§??), as well as
employing flow typing and structural typing.

4.1 Overview

Types in Whiley are unusual (in part) because there is a large gap between their syn-
tactic description and their underlying semantic meaning. In most programming lan-
guages (e.g. Java), this gap is either small or non-existent and, hence, there is little to
worry about. However, in Whiley, we must tread carefully to avoid confusion. The
following example attempts to illustrate this gap between the syntax and semantics of
types:

1 function id(null|int x) -> int|null:
2 return x

In this function we see two distinct type descriptors expressed in the program text,
namely “int|null” and “null|int”. Type descriptors occur at the source-level and
describe types which occur at the semantic level. In this case, we have two distinct type
descriptors which describe the same underlying semantic type. We will often refer to
types as providing the semantic (i.e. meaning) of type descriptors.
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4.2 Type Descriptors

Type descriptors provide syntax for describing types and, in the remaining sections
of this chapter, we explore the range of types supported in Whiley. The top-level
grammar for type descriptors is:

Type ::= UnionType

| TermType

TermType ::=

| PrimitiveType

| RecordType

| ReferenceType

| NominalType

| ArrayType

| FunctionType

| MethodType

| ( Type )

4.3 Primitive Types

Primitive types are the atomic building blocks of all types in Whiley.

PrimitiveType ::=

| VoidType

| NullType

| BoolType

| ByteType

| IntType

| RealType

4.3.1 Null

The null type is typically used to show the absence of something. It is distinct from
void, since variables can hold the special null value (where as there is no special
“void” value). The set of values defined by the type null is the singleton set contain-
ing exactly the null value. Values of null type support only equality comparators
(§6.7). The null value is particularly useful for representing optional values and ter-
minating recursive types.
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NullType ::= null

Example. The following illustrates a simple example of the null type:

1 import std.math

2

3 type Tree is null | { int data, Tree left, Tree right }

4

5 function height(Tree t) -> int:
6 if t is null:
7 // height of empty tree is zero
8 return 0

9 else:
10 // height is this node plus maximum height of subtrees
11 return 1 + math.max(height(t.left), height(t.right))

This defines Tree — a recursive type — which is either empty (i.e. null) or consists
of a field data and two subtrees, left and right. The height function calculates the
height of a Tree as the longest path from the root through the tree.

Notes. With all of the problems surrounding null and NullPointerExceptions in
languages like Java and C, it may seem that this type should be avoided. However, it
remains a very useful abstraction (e.g. for terminating recursive types) and, in Whiley,
is treated in a completely safe manner (unlike e.g. Java).

4.3.2 Booleans

The bool type represents the set of boolean values (i.e. true and false). Values of
bool type support equality comparators (§6.7), binary logical operators (§6.10) and
logical not (§6.10.1).

BoolType ::= bool

Example. The following illustrates a simple example of the bool type:

1 // Determine whether item is contained in list or not
2 function contains(int[] list, int item) -> bool:
3 // examine every element of list
4 int i = 0

5 while i < |list|:
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6 if list[i] == item:

7 return true

8 i = i + 1

9 // done
10 return false

This function determines whether or not a given integer value is contained within
an array of integers. If so, it returns true, otherwise it returns false.

4.3.3 Bytes

The type byte represents the set of all eight-bit sequences, whose values are expressed
numerically using 0 and 1 followed by b (e.g. 00101b). The set of values defined by
the byte type is the set of all 256 possible combinations of eight-bit sequences. Values
of byte type support equality comparators (§6.7), bitwise operators (§6.5), bitwise
complement (§6.5.1) and shift operators (§6.5.3).

ByteType ::= byte

Example. The following illustrates a simple example of the byte type:

1 // convert a byte into a string
2 function toString(byte b) -> ascii.string:
3 ascii.string r = [’0’; 8]

4 int i = 0

5 while i < 8:

6 if (b & 0b00000001) == 0b00000001:

7 r[i] = ’1’

8 b = b >> 1

9 i = i + 1

10 return r

This illustrates the conversion from a byte into a string. The conversion is per-
formed one digit at a time, starting from the rightmost bit.

Notes. Unlike for many languages, there is no representation associated with a byte.
For example, to extract an integer value from a byte, it must be explicitly decoded
according to some representation (e.g. two’s compliment) using an auxillary function
(e.g. Byte.toInt()).
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4.3.4 Integers

The type int represents the set of all arbitrary-sized integers, whose values are ex-
pressed as a sequence of one or more numerical or hexadecimal digits (e.g. 123456,
0xffaf, etc). Values of int type support equality comparators (§6.7), relational com-
parators (§6.3.2), additive (§6.3.3), multiplicative (§6.3.4) and negation (§6.3.1) opera-
tions.

IntType ::= int

Example. The following illustrates a simple example of the int type:

1 function fib(int x) -> int:
2 if x <= 1:

3 return x

4 else:
5 return fib(x-1) + fib(x-2)

This illustrates the well-known recursive function for computing numbers in the
fibonacci sequence.

Notes. Since integers in Whiley are of arbitrary size, integer overflow is not possible.
This contrasts with other languages (e.g. Java) that used fixed-width number represen-
tations (e.g. 32bit two’s complement). Furthermore, there is nothing equivalent to the
constants found in such languages for representing the uppermost and least integers
expressible (e.g. Integer.MIN_VALUE and Integer.MAX_VALUE, as found in Java).

4.3.5 Void

The void type represents the empty set of values. Thus, void is the bottom type (i.e.
⊥) in the lattice of types and, hence, is the subtype of all other types. Void is used to
represent the return type of a method which does not return anything. Furthermore,
it is also used to represent the element type of an empty array. Finally, unlike the
majority of other types, there are no values of type void.

VoidType ::= void

Example. The following example illustrates several uses of the void type:
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1 // Attempt to update first element
2 method update1st(&(int[]) list, int value):

3 // First, check whether list is empty or not
4 if (*list) != [0;0]:

5 // Then, update 1st element
6 (*list)[0] = value

7 // done

Here, the method update1st is declared to return void — meaning it does not
return a value. Instead, this method updates some existing state accessible through
the reference list. Within the method body, the value accessible via this reference is
compared against [0;0] (i.e. the empty array).

4.4 Records

A record type describes the set of all compound values made from one or more fields,
each of which has a unique name and a corresponding type. Values of record type
support equality comparators (§6.7) and field access (§6.11.1) operations, as well as
field assignment (§5.2.2).

RecordType ::= { MixedType
(
, MixedType

)∗ [
, ...

]
}

MixedType ::= Type Ident

| function Ident ParameterTypes -> ParameterTypes

| method Ident ParameterTypes
[
-> ParameterTypes

]

Records use mixed types for defining fields, meaning that field names may be mixed
within their type. This is primarily useful for fields of function or method type (see be-

low). Records using the ... notation are referred to as open records (e.g. {int x, ...}),

otherwise they are referred to as closed records (e.g. {int x, int y}). Open records
represent all records containing at least the given fields, whilst closed records represent
those containing exactly the given fields.

Example. The following example illustrates an open record type:

1 type Writer is {

2 method write(byte[]) -> int,
3 ...

4 }

5 type PrintWriter is {
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6 method write(byte[]) -> int,
7 method println(ascii.string),
8 ...

9 }

The above illustrates two open records Writer and PrintWriter. The former has
one field (write), whilst the latter has two fields (write and println). The above
also illustrates use of mixed types. For example, the field “write” is declared as
“method write([byte]) -> int” which mixes together the field name (i.e. “write”)
with its type (i.e. “method([byte]) -> int”).

4.5 References

A reference types represents the set of all references to values of a type given, such
as those allocated in the heap. They are similar to references or pointers found in
many imperative and object-oriented languages (e.g. C/C++, Java, C#, etc). A type &T
represents a reference to a value of type T. Values of reference type support equality
comparators (§6.7) and dereference (§6.12.2) operations, as well as dereference assign-
ment (§5.2.2).

ReferenceType ::= & Type

| & Lifetime : Type

Lifetime ::= * | this | Ident

Example. The following example illustrates reference types:

1 // Swap contents of heap-allocated int variables
2 method swap(&int pX, &int pY):

3 int tmp = *pX

4 *pX = *pY

5 *pY = tmp

The above illustrates a method which accepts two references to variables of type
int that may refer to the same variable. The method simply swaps the contents of the
variables to which they refer.
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4.6 Nominals

Nominal types represent user-defined types declared within one or more Whiley source
files. Nominal types provide a mechanism for enforcing information hiding, and also
for constructing recursive types (§4.10). All nominal types have an underlying — or,
concrete — type and are indistinguishable from this type.

NominalType ::= Ident

Example. The following example illustrates nominal types:

1 // Using a nominal type to construct a recursive type
2 type LinkedList is null | { int data, LinkedList next }

The type LinkedList is declared using a reference to itself to define a recursive type
(§4.10).

4.7 Arrays

An array type represents the set of all arrays holding values of a given element type.
For example, [1,2,3] is an instance of array type int[]; however, [1.345] is not. Val-
ues of array type support equality comparators (§6.7) and access expressions (§6.4.2).

ArrayType ::= Type [ ]

Example. The following example illustrates array types:

1 function add(int[] v1, int[] v2) -> (int[] v3)

2 requires |v1| == |v2|

3 ensures |v1| == |v3|:

4 //
5 int i=0

6 while i < |v1|:

7 v1[i] = v1[i] + v2[i]

8 i = i + 1

9 return v1

The above illustrates a simple function which adds each corresponding element
from two integer array together. The function’s precondition requires that both input
arrays have the same length, whilst its postconditions ensures that this matches the
length of the output.
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4.8 Functions and Methods

A function or method type describes the signature of a function or method. These
types enable functions or methods to be passed around as values in Whiley and are
often referred to as functors. This enables a degree of polymorphism in the language,
where the exact function or method to be called is unknown. Values of function or
method type support equality comparators (§6.7) only.

FunctionType ::= function ParameterTypes -> ParameterTypes

MethodType ::= method
[
ContextLifetimes

][
LifetimeParameters

]
ParameterTypes

[
-> ParameterTypes

]
ParameterTypes ::= (

[
Type

(
, Type

)∗ ]
)

ContextLifetimes ::= [ ContextLifetime
(
, ContextLifetime

)∗ ]

ContextLifetime ::= this | Ident

Example. The following example illustrates function types:

1 type Fun is function(int) -> int
2

3 function map(int[] items, Fun fn) -> int[]:
4 //
5 int i = 0

6 while i < |items|:

7 items[i] = fn(items[i])

8 i = i + 1

9 //
10 return items

The above illustrates the well-known map function, which maps all elements of an
array according to a given function.

4.9 Unions

A union type is constructed from two or more component types and contains any
value held in any of its components. For example, the type null|int is a union which
holds either an integer value or null. The set of values defined by a union type T1|T2
is exactly the union of the sets defined by T1 and T2. In general, variables of union
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type support only equality comparators (§6.7) and type tests (§6.14). See §4.11 for
exceptions to this.

UnionType ::= TermType
(
| TermType

)∗

Example. The following example illustrates a union type:

1 // Return lowest index of matching item, or null if none
2 function indexOf(int[] items, int value) -> int|null:
3 int i = 0

4 while i < |items|:

5 if items[i] == value:

6 // match
7 return i

8 i = i + 1

9 // item not found
10 return null

Here, a union type is used to construct a more expressive return value. If no match-
ing element is found, null is returned (rather than e.g. -1).

4.10 Recursive Types

Recursive types describe tree-like structures of arbitrary depth. For example, linked
lists, binary trees, quad trees, etc can all be described using recursive types. Recursive
types have no explicit syntax and, instead, are declared indirectly in terms of them-
selves using one or more nominal types (§4.6).

Example. The following example illustrates a simple recursive type:

1 type Node is { Tree left, Tree right, int data }

2 type Tree is null | Node

3

4 function sizeOf(Tree t) -> int:
5 if t == null:
6 return 0

7 else:
8 return 1 + sizeOf(t.left) + sizeOf(t.right)

Here, the type Tree is recursive because it is defined in terms of itself. An instance
of type Tree is a sequence of nested records which is arbitrarily deep, and whose
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branches are terminated by null. The function sizeOf() traverses an arbitrary in-
stance of Tree and returns the number of Nodes it contains.

4.11 Effective Types

An effective type is a union of types which all contain some property (e.g. a union of
arrays). This common property allows the effective type to support more operations
than possible for an arbitrary union (§4.9).

4.11.1 Effective Records

An effective record is a union of two or more record types with at least one field in
common. For example, {int f, int g}|{real f, int h} is an effective record. An
effective record provides access to fields common to all records in the union. For
example, the type {int f, int g}|{real f, int h} can be viewed as having an
effective type of {int|real f, ...} and, hence, read access to field f is given.

4.11.2 Effective Array

An effective array is a union of array types. For example, int[]|real[] is an effec-
tive array. An effective collection supports all operations valid for a array type (§4.7).
For example, the type int[]|real[] can be viewed as having an effective type of
(int|real)[] and, hence, read access to its length and elements is given.

4.12 Semantics

Although types are abstract entities we can (for the most part) imagine them as de-
scribing sets of abstract values. For example, int|null denotes the set of values con-
taining exactly the (infinite) set of integers and null (i.e. Z ∪ {null}). This is often
referred to as a set-theoretic interpretation of types [15;16;17;18]. Under this interpreta-
tion, for example, one type subtypes another if the set of values it denotes is a subset of
the other (see § 4.12.2 for more).

4.12.1 Equivalences

Since types are defined in terms of the set of values they represent, it is possible for two
distinct type descriptors to describe the same underlying type. For example, int|null
is considered equivalent to null|int. Whilst this case is fairly easy to spot, others are
not so obvious. Some examples are given here to illustrate:

• {int | null f} is equivalent to {int f} | {null f}
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Unfortunately, an infinite number of equivalences exist between the type descrip-
tors of Whiley, and we cannot list them all here.

4.12.2 Subtyping

Types in Whiley support the notion of subtyping where one type may be a subtype for
another. For example, the type int is a subtype of int|bool. Likewise, bool is a
subtype of bool|null. The subtyping operator is denoted by “≤”; for example, T1 ≤ T2

indicates that type T1 is a subtype of T2. The subtyping operator is reflexive, transitive
and anti-symmetric with respect to the underlying types involved.

The subtyping operator is regarded as an algorithm for determining whether the
type described by one type descriptor is a subtype of another. The implementation of
this algorithm is not straightforward and a full discussion of it is beyond the scope of
this document. Indeed, there are many possible implementations of this operator.
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Chapter 5

Statements

The execution of a Whiley program is controlled by statements, which cause effects on
the environment. However, statements in Whiley do not produce values. Compound
statements may contain other statements.

5.1 Blocks

A statement block is a sequence of zero or more consecutive statements which have
the same indentation (§2.2). Statement blocks are used to group statements together
when constructing compound statements. For example:

1 function sum(int[] items) -> int:
2 // outer block begins
3 int r = 0

4 int i = 0

5 while i < |items|:

6 // inner block begins
7 r = r + items[i]

8 i = i + 1

9 // inner block ends
10 //
11 return r

12 // outer block ends

The above example contains two statement blocks, one nested inside the other.
The outer block demarcates the body of the sum() function, whilst the inner block
demarcates the body of the while statement.
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5.1.1 Named Blocks

A named block identifies a distinct subregion of a given block. The primary use for
named blocks is in the context of reference lifetimes (§4.5), as these can be associated
with an enclosing block.

NamedBlock` ::= Ident : Blockγ

(where ` < γ)

Example. The following illustrates a named block:

1 method m(int item):

2 &this:int x = this:new item

3 myblock: // declares a new lifetime ’myblock’
4 &myblock:int y = x

Here, a named block is used to constrain the lifetime of reference y. As a result, the
lifetime of reference x strictly contains that of reference y.

5.2 Simple Statements

A simple statement is a statement where control always continues to the next statement
in sequence. Simple statements do not contain other statements nested within them.

5.2.1 Assert Statement

An assert statement is of the form “assert e”, where e is a boolean expression. A
fault will be raised at runtime if the asserted expression evaluates to false; otherwise,
execution will proceed normally. At verification time, the verifier is forced to ensure
that the asserted expression is true for all possible execution paths. This allows the
programmer to specify and check something he/she believes to be true at a given
point in the program.

AssertStmt ::= assert Expr

Example. The following illustrates an assert statement:

1 function abs(int x) -> int:
2 if x < 0:
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3 x = -x

4 assert x >= 0

5 return x

Here, an assertion is used to check that the value being returned by the abs() is
non-negative. Since this is a true statement of the function, this statement will never
raise a fault.

5.2.2 Assignment Statement

An assignment statement is of the form leftHandSide = rightHandSide. Here, the
rightHandSide is a sequence of one or more expressions, whilst the leftHandSide

is sequence to an identical number of LVal expressions — that is, expressions per-
mitted on the left-hand side of an assignment. At runtime, those values generated
by evaluating the right-hand side must be subtypes (§4.12.2) of their corresponding
target on the left-hand side. An assignment statement which contains multiple LVal

expressions on the left-hand side is referred to as a multiple assignment. An assignment
statement which contains an LVal expression on the left-hand side consisting purely
of an Ident is said to directly assign that variable.

AssignStmt ::= LVal
(
, LVal

)∗ = Expr
(
, Expr

)∗
LVal ::= Ident

| LVal . Ident

| LVal [ Expr ]

| * Expr

Example. The following illustrates different possible assignment statements:

1 method f1(int[] x, int[] y):

2 x = y // variable assignment
3

4 method f2({int f} x, int y):

5 x.f = y // field assignment
6

7 method f3(int[] x, int i, int y):

8 x[i] = y // list assignment
9

10 method f4({int f}[] x, int i, int y):

11 x[i].f = y // compound assignment
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The last assignment here illustrates that the left-hand side of an assignment can be
arbitrarily complex, involving nested assignments into arrays and records.

5.2.3 Assume Statement

An assume statement is of the form “assume e”, where e is a boolean expression. A
fault will be raised at runtime if the assumed expression evaluates to false; otherwise,
execution will proceed normally. At verification time, the verifier will automatically
assume that the given expression holds. Thus, assume statements provide a way for
the programmer to override the verifier. This is useful where the verifier is unable
to establish something that the programmer knows to be true. Care must be taken to
ensure that the assumed expression really does hold.

AssumeStmt ::= assume Expr

Example. The following illustrates an assume statement:

1 function abs(int x) -> (int y) ensures y >= 0:

2 //
3 assume x >= 0

4 return x

Here, the programmer has used an assumption to ensure this function passes ver-
ification. This would not appear to be safe in this case, and may lead to a fault at
runtime.

5.2.4 Debug Statement

A debug statement outputs the result of evaluating its expression to the debug stream.
Debug statements are intended to be used purely for debugging, particularly from
within (pure) functions. The debug stream is an imaginary output stream which does
not exist in the true semantic of the language. Instead, from an operational semantics
perspective, the debug statement is equivalent to the skip statement (§5.2.5).

DebugStmt ::= debug Expr

Example. The following illustrates a debug statement:

1 function f(int x) -> int:
2 debug "f(int) called"
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3 if x == 1 || x == 0:

4 return x

5 else:
6 return f(x-1) + f(x-2)

Here, we see a recursive implementation of the well-known fibonacci sequence. A
debug statement is being used to report when a given function is invoked.

5.2.5 Skip Statement

A skip statement is a no-operation and has no effect on the environment. This statement
can be useful for representing empty statement blocks (§5.1).

SkipStmt ::= skip

Example. The following illustrates a skip statement:

1 function abs(int x) -> (int y)

2 // Return value cannot be negative
3 ensures y >= 0:

4 //
5 if x >= 0:

6 skip
7 else:
8 x = -x

9 //
10 return x

Here, we see a skip statement being used to represent an empty statement block.

5.2.6 Variable Declaration Statement

A variable declaration statement has an optional expression assignment referred to as a
variable initialiser. If an initialiser is given, this will be evaluated and assigned to the
declared variables when the declaration is executed.

VarDecl ::= Type Ident
(
, Type Ident

)∗ [
= Expr

(
, Expr

)∗ ]

Example. Some example variable declarations are:
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1 method f():

2 int x

3 int y = 1

4 int z = y + y

5 int a, int b = y,z

Here we see four variable declarations. The first has no initialiser, whilst the re-
mainder have initialisers. The final declaration illustrates a more complex use of type
patterns where two variables of type int are initialised from a tuple expression

5.3 Control Statements

A control statement is a statement which may have multiple exit points, and where con-
trol does not always continue to the next statement in sequence. Control statements
may contain other statements nested within them.

5.3.1 Break Statement

A break statement transfers control out of the lexically-nearest enclosing loop (i.e. do,
while). It is a compile-time error if no such enclosing loop exists.

BreakStmt ::= break

Example. The following illustrates a break statement:

1 // Find first index matching x
2 function find(int[] xs, int x) -> int:
3 int i = 0

4 while i < |xs|:

5 if xs[i] == x:

6 break
7 else:
8 i = i + 1

9 //
10 return i

Here, we see a break statement being used to exit a while loop when the first
element matching parameter x is found.

Notes. Unlike many other programming languages (e.g. Java), break statements
cannot be used to transfer control out of a switch statement (§5.3.7). This is because
switch statements have explicit, rather than implicit, fall-through.
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5.3.2 Continue Statement

A continue statement can be used either to transfer control to the next iteration of the
enclosing loop (i.e. do, while), or to transfer control to the next case of the enclosing
switch statement.

ContinueStmt ::= continue

Example. The following illustrates a continue statement:

1 function sumNonNegative(int[] xs) -> int:
2 int i = 0

3 int r = 0

4 while i < |xs|:

5 if xs[i] < 0:

6 continue
7 r = r + xs[i]

8 i = i + 1

9 return r

Here, a continue statement is used to ensure that negative numbers are not in-
cluded in the result of the function.

Notes. Unlike many other programming languages (e.g. Java), continue statements
are used to transfer control to the next case of a switch statement (§5.3.7). This is
because switch statements have explicit, rather than implicit, fall-through.

5.3.3 Do/While Statement

A do-while statement repeatedly executes a statement block until an expression (the
condition) evaluates to false. Optional where clause(s) are permitted which, together,
are commonly referred to as the loop invariant.

DoWhileStmt` ::= do : Blockγ while Expr
(
where Expr

)∗
(where ` < γ)

Example. The following illustrates an do-while statement:

1 function sum(int[] xs) -> int
2 // Input must not be empty list
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3 requires |xs| > 0:

4 //
5 int r = 0

6 int i = 0

7 do:
8 r = r + xs[i]

9 i = i + 1

10 while i < |xs| where i >= 0

11 //
12 return r

Here, we see a simple do-while statement which sums the elements of variable
xs, storing the result in variable r. A loop invariant is given which establishes that
variable i is non-negative.

Notes. When multiple where clauses are given, these are combined using a conjunc-
tion to form the loop invariant. The combined invariant must hold after each itera-
tion. Thus, when the condition evaluates to false, the loop invariant is guaranteed
to hold. However, the loop invariant need not hold when the loop is exited using a
break (§5.3.1) statement.

5.3.4 Fail Statement

A fail statement is used to signal unreachable code. At runtime, this forces abrupt
termination of the program. At verification time, the verifier will ensure the statement
is unreachable.

FailStmt ::= fail

Example. The following illustrates a fail statement:

1 type nat is (int x) where x >= 0

2 type neg is (int x) where x < 0

3

4 function f(int|null x) -> bool|null:
5 //
6 if x is nat:

7 return true

8 else if x is neg:

9 return false

10 else:
11 fail
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Here, we see a simple function which checks whether its parameter x is positive or
negative. A fail statement is used to signal that the last branch is, in fact, unreachable.

5.3.5 If Statement

An if statement conditionally executes a statement block based on the outcome of
one or more expressions. Chaining of if statements is permitted, and an optional
else branch may be given. The expression(s) are referred to as conditions and must be
boolean expressions. The first block is referred to as the true branch, whilst the optional
else block is referred to as the false branch.

IfStmt` ::= if Expr : Blockγ
(
else if Expr : Blockωi

)∗[
else : Blockφ

]
(where ` < γ and ∀i.` < ωi and ` < φ)

Example. The following illustrates an if statement:

1 function max(int x, int y) -> int:
2 if(x > y):

3 return x

4 else if(x == y):

5 return 0

6 else:
7 return y

Here, we see an if statement with two conditional outcomes and one default out-
come.

5.3.6 Return Statement

A return statement has an optional expression referred to as the return value. At run-
time, this statement returns control to the caller of the enclosing function or method.
At verification time, the verifier will ensure the returned value meets the postcondi-
tion of the enclosing function or method.

ReturnStmt ::= return
[
Expr

(
, Expr

)∗ ]
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Example. The following illustrates a return statement:

1 function f(int x) -> int:
2 return x + 1

Here, we see a simple simple function which returns the increment of its parameter
x using a return statement.

Notes. The returned expression (if there is one) must begin on the same line as the
statement itself.

5.3.7 Switch Statement

A switch statement transfers control to one of several statement blocks, referred to as
switch cases, depending on the value obtained from evaluating a given expression.
Each case is associated with one or more values which are used to match against. If no
match is made, control either falls through to the next statement following the switch
or is transferred to a default block if one is given.

SwitchStmt` ::= switch Expr :
(
CaseBlockγ | DefaultBlockγ

)
+

CaseBlock` ::= case ConstantExpr
(
, ConstantExpr

)∗ : Blockγ

DefaultBlock` ::= default : Blockγ

(where ` < γ)

Example. The following illustrates a switch statement:

1 function toDescriptorString(Primitive t) -> string:
2 switch t:

3 case Boolean:

4 return "Z"

5 case Byte:

6 return "B"

7 case Char:

8 return "C"

9 case Short:

10 return "S"

11 case Int:

12 return "I"

13 case Long:
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14 return "J"

15 case Float:

16 return "F"

17 default:
18 return "D"

Here, we see a simple switch statement which choose between a number of possi-
ble values of type Primitive. A default case is given which catches the only remain-
ing case (i.e. representing the value Double).

5.3.8 While Statement

A while statement repeatedly executes a statement block until an expression (the con-
dition) evaluates to false. Optional where clause(s) are permitted which, together,
are commonly referred to as the loop invariant.

WhileStmt` ::= while Expr
(
where Expr

)∗ : Blockγ

(where ` < γ)

Example. The following illustrates an while statement:

1 function sum(int[] xs) -> int:
2 int r = 0

3 int i = 0

4 while i < |xs| where i >= 0:

5 r = r + xs[i]

6 i = i + 1

7 return r

Here, we see a simple while statement which sums the elements of variable xs,
storing the result in variable r. A loop invariant is given which establishes that vari-
able i is non-negative.

Notes. When multiple where clauses are given, these are combined using a conjunc-
tion to form the loop invariant. The combined invariant must hold on entry to the
loop and after each iteration. Thus, when the condition evaluates to false, the loop
invariant is guaranteed to hold. However, the loop invariant need not hold when the
loop is exited using a break (§5.3.1) statement.
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Chapter 6

Expressions

The majority of work performed by a Whiley program is through the execution of
expressions. Every expression produces a value and may have additional side effects.

6.1 Evaluation Order

The operands for operators in Whiley are evaluated in a specific left-to-right evaluation
order. This always respects parentheses and operator precedence. Furthermore, aside
from the short-circuiting operators (§6.10.2), operands are always fully evaluated be-
fore any part of the operation is performed.

6.1.1 Operator Precedence

To determine the evaluation order for mixed-operator expressions without explicit
parenthesis, a fixed operator precedence is used. This is first determined by operator
class:

1. Unary Expressions. This operator class represents operators which take exactly
one operand. This class takes highest precedence, and includes operators such
as arithmetic negation (§6.3.1) and logical not (§6.10.1).

2. Binary (Infix) Expressions. This operator class represents operators which ac-
cept two operands with an infix syntax. This class includes the usual range of
common binary operators, such as arithmetic operators (§6.3.3,§6.3.4), logical
connectives (§6.10.2), etc.

3. Binary (Mixfix) Expressions. This operator class represents operators which
accept two operands but which are non-infix operators and, hence, precedence
is not ambiguous. This class includes the array access (§6.4.2) and field access
operator (§6.11.1).
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4. N-Ary Expressions. This operator class represents operators which accept an
arbitrary number of operands. This class includes array constructors (§6.4.4),
record constructors (§6.11.2), etc.

Within the class of binary infix expressions, an explicit precedence rank is given
for each operator:

1 * /

2 + -

3 == != < <= >= >

4 &

5 |

6 ˆ

7 &&

8 ||

9 ==>

10 <==>

Lower ranked operators bind more tightly (i.e. take higher precedence) than higher
ranked operators.

6.2 Unit Expressions

An expression returns exactly one value. There is a large range of possible unit ex-
pressions, including comparators, arithmetic operators, logical operators, etc.
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Expr ::= ArithmeticExpr

| BitwiseExpr

| CastExpr

| EqualityExpr

| InvokeExpr

| LambdaExpr

| LogicalExpr

| ArrayExpr

| RecordExpr

| ReferenceExpr

| TermExpr

6.3 Arithmetic Expressions

Arithmetic expressions operate on values of numeric type (currently just int).

ArithmeticExpr ::= ArithmeticNegationExpr

| ArithmeticRelationalExpr

| ArithmeticAdditiveExpr

| ArithmeticMultiplicativeExpr

6.3.1 Negation Expressions

A negation expression accepts one argument of numeric type and produces a result
of matching type. Specifically, the negation operator mathematically negates the given
value, which is always equivalent to subtracting the operand from zero.

ArithmeticNegationExpr ::= - Expr

Example. The following illustrates the negation operator:

1 function negAccess(int i, int[] items) -> int
2 requires -|items| <= i && i < |items|:

3 //
4 if i < 0:

5 return -items[-(i+1)]

6 else:
7 return items[i]
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6.3.2 Relational Expressions

Relational expressions are either strict (where only inequality is tested) or non-strict
(where both equality and inequality are tested). The less-than comparator, <, and greater-
than comparator, >, are strict. Conversely, the less-than-or-equal comparator, <=, and
greater-than-or-equal comparator, >=, are non-strict.

ArithmeticRelationalExpr ::= Expr < Expr

| Expr <= Expr

| Expr => Expr

| Expr > Expr

Example. The following example illustrates the strict inequality comparators:

1 function compare(int x, int y) -> int:
2 if x < y:

3 return -1

4 else if x > y:

5 return 1

6 else:
7 return 0

This function compares two integer arguments and returns the “sign” of their com-
parison. The strict inequality comparators are used so the case where x == y can be
distinguished.

6.3.3 Additive Expressions

An additive expression accepts two arguments of type int and produces a result of the
same type. The addition operator, +, adds both arguments together whilst the subtraction
operator, -, subtracts its right argument from its left argument.

ArithmeticAdditiveExpr ::= Expr
(
+ | -

)
Expr

Example. The following illustrates the additive operators:

1 function diff(int a, int b) -> int:
2 return a - b
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This function simply computes the difference between its two arguments using the
subtraction operator.

6.3.4 Multiplicative Expressions

A multiplicative expression accepts two arguments of type int and produces a result
of the same type. The multiplication operator, *, multiplies both arguments together
whilst the division operator, /, divides its left argument by its right argument. Finally,
the remainder operator returns the remainder of its operands from an implied division.

ArithmeticMultiplicativeExpr ::= Expr
(
* | / | %

)
Expr

Example. The following illustrates the remainder operator:

1 function indexOf(int[] xs, int i) -> int
2 requires i >= 0 && |xs| > 0:

3 //
4 return xs[i % |xs|]

This function accepts a non-negative integer and uses this to index into an array.
To ensure the array access is within bounds, the remainder operator is used. Fur-
thermore, the function requires the array is non-empty to prevent a fault with the
remainder operator.

Notes. For division, the right operator must be non-zero otherwise a fault is raised,
and likewise for remainder. For integer division, the result is rounded towards zero.
For a remainder operation, the result may be negative (e.g. -4 % 3 == -1).

6.4 Array Expressions

Array expressions operate on values of array type (e.g. int[], (bool|byte)[], etc).

ArrayExpr ::=

| ArrayLengthExpr

| ArrayAccessExpr

| ArrayGeneratorExpr

| ArrayInitialiserExpr
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6.4.1 Length Expressions

The lengthof operator accepts a value of array type, and produces a value of int type
which equals the number of elements in the array.

ArrayLengthExpr ::= | Expr |

Example. The following example illustrates the lengthof operator:

1 // Return first item in list over a given item
2 function firstOver(int[] items, int item) -> int|null:
3 int i = 0

4 while i < |items|:

5 if items[i] > item:

6 return item

7 i = i + 1

8 // no match
9 return null

The above function iterates through all elements in an array looking for the first
which is above a given item. The length operator is used to ensure this iteration re-
mains within bounds.

6.4.2 Access Expressions

An array access expression accepts a array argument with one operand and produces
a value of the array element type. The index-of operator returns the element at the given
operand position in the array.

ArrayAccessExpr ::= Expr [ Expr ]

Examples. The following example illustrates the array access operator:

1 // Check whether an array is sorted or not
2 function isSorted(int[] items) -> bool:
3 int i = 1

4 //
5 while i < |items|:

6 if items[i-1] > items[i]:

7 return false

8 i = i + 1
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9 //
10 return true

The above function determines whether a given array of integers is sorted from
smallest to largest. The array access operator is used to access successive elements in
the array.

6.4.3 Generator Expressions

An array generator accepts two arguments and produces a value of array type. The
second argument must be of int type and the array produced contains exactly this
many occurrences of the first argument.

ArrayGeneratorExpr ::= [ Expr ; Expr ]

Examples. The following example illustrates an array generator:

1 function cons(int head, int[] tail) -> int[]:
2 int[] r = [head; |tail| + 1]

3 int i = 0

4 //
5 while i < |tail|:

6 r[i+1] = tail[i]

7 i = i + 1

8 //
9 return r

This function constructs a array by prepending a given element onto the front of a
given array. The array generator is used to construct the initial array of values whose
size is one larger than the original array.

6.4.4 Array Initialiser

An array initialiser accepts zero or more operands and produces a value of array type.
Array initialisers are used to construct arrays from their constituent elements.

ArrayInitialiserExpr ::= [
[
Expr

(
, Expr

)∗ ]
]
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Example. The following example illustrates an array initialiser:

1 constant digits is [’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’]

2

3 // Convert an integer value into a string
4 function toString(int item) -> int[]:
5 int[] r = [0;0]

6 //
7 while item != 0:

8 int v = item / 10

9 int w = item % 10

10 r = Arrays.append(digits[w],r)

11 item = v

12 //
13 return r

The above function converts an integer value into its string representation. An
array initialiser is used to map integer values to their corresponding digits. An empty
array initialiser is also used to initialise the string.

6.5 Bitwise Expressions

Bitwise expressions operate on values of byte type.

BitwiseExpr ::= BitwiseComplementExpr

| BitwiseBinaryExpr

| BitwiseShiftExpr

6.5.1 Complement Expressions

The bitwise complement operator accepts an argument of byte type (§4.3.3) and produces
a result of matching type. The operator returns bitwise complement of the argument;
that is, where the sign of each bit is reversed.

BitwiseComplementExpr ::= ∼ Expr

Example. The following example illustrates the bitwise complement operator:

1 // Check whether a given bit is zero
2 function isZero(byte b, int bit) -> bool:
3 byte mask = 0b1 << bit
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4 return (b & ∼mask) == b

6.5.2 Binary Expressions

A bitwise binary expression operates on values of byte type (§4.3.3). The bitwise AND
operator, &, performs a logical AND between the respective bits of each operand, and
produces a byte. The bitwise OR operator, |, performs a logical OR between the re-
spective bits of each operand, and produces a byte. The bitwise exclusive-OR operator,
^, performs a logical exclusive-OR between the respective bits of each operand, and
produces a byte.

BitwiseBinaryExpr ::= Expr
(
& | | | ˆ

)
Expr

Example. The following example illustrates the bitwise OR operator:

1 constant AF is 4

2 constant ZF is 6

3

4 function setFlag(byte flags, int flag) -> byte:
5 byte mask = 0b0000_0001 << flag

6 return flags | mask

7

8 function getFlag(byte flags, int flag) -> bool:
9 byte mask = 0b0000_0001 << flag

10 return (flags & mask) != 0

These functions provide mechanisms for manipulating a byte of “flags”, as deter-
mined by the constant identifiers. The bitwise OR operator is used to ensure a given
bit is set, whilst the bitwise AND operator is used to check whether one is set or not.
This example also illustrates the left-shift operator (§6.5.3).

6.5.3 Shift Expressions

A bitwise shift expression accepts an argument of byte type (left) and one of int type
(right) and produces a value of byte type. The left shift operator, <<, shifts the bits of a
byte in an upwards direction, such that the most significant bit is discarded and the
least significant bit assigned 0. The right shift operator, >>, shifts bits in a downwards
direction, such that the least significant bit is discarded and the most significant bit
assigned 0.
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BitwiseShiftExpr ::= Expr
[ (

« | »
)
Expr

]

Examples. The following illustrates the left shift operator:

1 public function toUnsignedByte(u8 v) -> byte:
2 //
3 byte mask = 0b00000001

4 byte r = 0b0

5 int i = 0

6 while i < 8:

7 if (v % 2) == 1:

8 r = r | mask

9 v = v / 2

10 mask = mask << 1

11 i = i + 1

12 return r

This function accepts an integer between 0 and 255 and converts this into an ap-
propriate bit representation. The left shift operator is used to maintain an internal
mask for the bit currently being initialised.

6.6 Cast Expressions

A cast operator accepts a value of one type and returns a value of a different, but equiv-
alent, type and this may result in a change of the underlying representation.

CastExpr ::= ( DefiniteType ) Expr

Example. The following illustrates a cast operator being used:

1

2 function f(Point3D p) -> Point2D:

3 return (Point2D) p

This function converts a record containing three int fields into one containing two
int fields. This requires that each field in the latter is a valid field in the former.
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6.7 Equality Expressions

The equality comparator, ==, tests whether two values are equal. Likewise, the inequality
comparator, !=, tests whether two values are not equal.

EqualityExpr ::=

| Expr == Expr

| Expr != Expr

Example. The following example illustrates an equality expression:

1 function contains(int[] items, int item) -> bool:
2 //
3 int i = 0

4 while i < |items|:

5 if i == item:

6 return true

7 i = i + 1

8 return false

This function checks whether a given integer is contained in an array of integers.
This is done by iterating each element of the array and comparing it against the given
item.

6.8 Invoke Expressions

A function or method invocation executes a named function or method declared in a
given source file. An indirect function or method invocation executes a function deter-
mined by a given expression. An invocation passes arguments of appropriate number
and type to the executed function or method. An invocation may also return one or
more values which can be subsequently used.

InvokeExpr ::= Name
[
LifetimeArgsList

]
ArgsList

IndirectInvokeExpr ::= Expr
[
LifetimeArgsList

]
ArgsList

ArgsList ::= (
[
Expr

(
, Expr

)∗ ]
)

LifetimeArgsList ::= < Lifetime
(
, Lifetime

)∗ >
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Example. The following example illustrates a function invocation:

1 // Determine the max of two values
2 function max(int x, int y) -> int:
3 if x >= y:

4 return x

5 else:
6 return y

7

8 // Determine the max of 1 or more values
9 function max(int[] items) -> int

10 requires |items| > 0:

11 //
12 int r = 0

13 int i = 0

14 while i < |items|:

15 r = max(r,items[i])

16 i = i + 1

17 //
18 return r

This example illustrates one function being called from another. Both functions
have the same name and are said to overload one another. Function resolution identifies
the appropriate function based on the number and type of arguments supplied.

6.9 Lambda Expressions

A lambda expression creates an anonymous function or method which can accept zero
or more arguments and whose return type is inferred from the body of the lambda.

LambdaExpr ::= &
[
ContextLifetimes

] [
LifetimeParameters

]
(

[
Type Ident

(
, Type Ident

)∗ ]
-> Expr )

Example. The following example illustrates a lambda expression:

1 // Type of function which accepts and returns an int
2 type fun_t is function(int)->int
3

4 // Apply a function to every element of a list
5 function map(fun_t fn, int[] xs) -> int[]:
6 int i = 0

7 while i < |xs|:
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8 xs[i] = fn(xs[i])

9 i = i + 1

10 return xs

11

12 // Add y to every element of items
13 function addAll(int[] items, int y) -> int[]:
14 fun_t fn = &(int x -> x + y)

15 return map(fn,items)

This function illustrates the classical map function which applies a function to all
elements of a collection. In this case, a lambda is used to create a function which adds
a constant value to its argument. This lambda is used to implement addAll() in terms
of map().

6.10 Logical Expressions

Logical expressions operate on values of bool type.

LogicalExpr ::=

| LogicalNotExpr

| LogicalBinaryExpr

| LogicalQuantExpr

6.10.1 Not Expressions

The logical not operator accepts an argument of bool type and produces a value of
bool. The value returned is the logical opposite of the argument.

LogicalNotExpr ::= ! Expr

Example. The following example illustrates the logical not operator:

1 function max(int a, int b):

2 if !(a < b):

3 return a

4 else:
5 return b

This function computes the maximum of two int values. The expression !(a < b)

is equivalent to a >= b and is used purely to illustrate the logical not operator.
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6.10.2 Connective Expressions

A logical connective operates on values of bool type (§4.3.2) to produce another bool
value. The if-and-only-if (iff) operator, <==>, returns true if either both operands are
true or both are false. The implication operator, ==>, returns true if either the left
operand is false, or both operands are true. The logical OR operator returns true if
either operand is true, whilst the logical AND operator returns true if both operands
are true.

LogicalBinaryExpr ::= Expr
(
<==> | ==> | && | ||

)
Expr

Example. The following examples illustrate some of the logical operators:

1 function implies(bool x, bool y) -> bool:
2 return !x || y

3

4 function iff(bool x, bool y) -> bool:
5 return implies(x,y) && implies(y,x)

The function implies() implements the well-known equivalence between impli-
cation and logical OR. The function iff() implements the well-known equivalence
between implication and iff.

6.10.3 Quantifier Expressions

A quantifier operates over an array of values and produces a value of bool type. The
universal quantifier, all, returns true if the given expression evaluates to true for ev-
ery element in the array, and false otherwise. The existential quantifier, some, returns
false if the given expression evaluates to false for every element in the array, and
true otherwise. The inverted universal quantifier, no, returns true if the given expres-
sion evaluates to false for every element in the array, and false otherwise

LogicalQuantExpr ::=
(
no | some | all

)
{

Ident in Expr
(
, Ident in Expr

)∗
| Expr }

Examples. The following example illustrates the universal quantifier:

1 // A type representing lists of natural numbers
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2 type natlist is (int[] xs) where
3 all { i in 0 .. |xs| | xs[i] >= 0 }

Here, the type natlist represents those integer arrays for which every element is
a natural number (i.e. greater-or-equal to zero).

6.11 Record Expressions

Record expressions operate on values of record type (e.g. {int x, int y}, etc).

6.11.1 Access Expressions

The field access operator accepts a value of record type and returns the value held in
a given field.

FieldAccessExpr ::= Expr . Ident

Examples. The following example illustrates a field access expression constructor:

1 type Vec is {int x, int y, int z}

2

3 function dotProduct(Vec v1, Vec v2) -> Vec:

4 return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z)

The above function computes the so-called dot product of two vectors. The field
access operator is used to access the three fields of each vector.

6.11.2 Record Initialisers

A record initialiser accepts one or more operands and produces a value of record type.
Record constructors are used to construct records from their constituent elements.

RecordInitialiserExpr ::= { FieldArgsList }

FieldArgsList ::= Ident : Expr
(
, Ident : Expr

)∗
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Example. The following example illustrates a record initialiser:

1 type Point is {int x, int y}

2

3 // Translate a given point based on a delta in x and y
4 function move(Point p, int dx, int dy) -> Point:

5 return { x: p.x+dx, y: p.y+dy }

The above function simply translates a Point from one position to another based
on a shift in x and in y. The record initialiser is used to construct the new Point.

6.12 Reference Expressions

Reference expressions operate on values of reference type (e.g. &int).

6.12.1 New Expressions

A new expression accepts an argument of any type and produces a reference to that
type. The new operator allocates sufficient space on the heap and initialises it with the
given value. It then returns a reference to this heap object.

NewExpr ::= new Expr

| Lifetime : new Expr

Example. The following example illustrates the new operator:

1 type LinkedList is null | &{LinkedList next, int data}

2

3 // Add a new item onto the head of the list
4 method add(LinkedList list, int item) -> LinkedList:

5 //
6 return new {next: list, data: item}

This example illustrates an operation for adding an item onto the front of a classical
linked list. Here, a LinkedList is either null or a reference to a node containing a
next reference and data item. The add operation simply allocates a new node and
places it on the front of the list.

6.12.2 Dereference Expressions

A dereference expression accepts an argument of reference type and returns a value
(or element) of the reference’s target type. The dereference operator returns the value
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referenced by the argument. The arrow operator returns a field of the value referenced
by the argument.

DereferenceExpr ::= * TermExpr

| Expr -> Ident

Example. The following illustrates the dereference operator:

1 type LinkedList is null | &{LinkedList next, int data}

2

3 method length(LinkedList l) -> int:
4 //
5 if l is null:
6 return 0

7 else:
8 return 1 + length(l->next)

This method traverses a linked list counting the number of links it contains. The
arrow operator is used to access the next link in the chain.

Notes. The arrow operation “e->f” is a short-hand notation for “(*e).f” and can
be used when *e has effective record type (§4.11.1).

6.13 Terminal Expressions

A terminal expression is one which can terminate an expression tree (though does not
necessarily do so). For example, a numeric literal represents a terminal node in an
expression tree.

TermExpr ::= Ident

| Literal

| ( Expr )

6.14 Type Test Expressions

TypeTestExpr ::= Expr is Type
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Chapter 7

Type Checking

The Whiley programming language is statically typed, meaning that: firstly, every ex-
pression has a type determined at compile time; second, evaluating an expression is
guaranteed to yield a value of its type. Whiley’s type system governs how the type of
any variable or expression is determined. Whiley’s type system is unusual in that it
operates in a flow-sensitive manner allowing variables to have different types at differ-
ent program points.

7.1 Overview

A type environment, Γ, binds variables declared in the enclosing scope(s) to their current
type. The current type of a variable may be its declared type, or a refinement thereof.
The environment Γ[x 7→ T] contains all of the bindings in Γ, except where x now binds
to T. The initial type environment, Γ0, for the requires, where clause(s) and body of
a function, method or type declaration contains exactly one binding for each param-
eter to its declared type. The initial type environment, Γr, for the ensures clause(s) of
a function or method additionally contains exactly one binding for each return to its
declared type. For example, consider the following partial declaration:

1 function f(int x, bool y) -> (null|int r):

2 ...

Here, Γ0 = {x 7→ int, y 7→ bool} and Γr = {x 7→ int, y 7→ bool, r 7→ (int ∨ null)}.

7.1.1 Flow Typing

Whiley’s type system employs flow-sensitive typing — flow typing — for determining
the type of each local variable within a given statement block. The pre-environment
gives the type environment immediately before a given statement. Likewise, the post-
environment gives the type environment immediately after a given statement. The flow
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typing system is responsible for calculating, for each statement, the post-environment
from the pre-environment. The judgment Γ0 ` S a Γ1 indicates that typing statement S
with environment Γ0 produces the (potentially updated) environment Γ1. For a given
statement block S1 . . . Sn, it follows that Γ0 ` S1 . . . Sn a Γn expands by chaining the
post-environment for each statement Sn into its successor Sn+1. That is, Γ0 ` S1 a Γ1,
Γ1 ` S2 a Γ2, and so on.

7.1.2 Scoping

The lifetime of a local variable extends from its declaration within a given statement
block to the end of that block. For example, if statement S declared variable x to have
type T, it follows that Γ ` S a Γ[x 7→ T]. Furthermore, we require that x was not already
declared in Γ (i.e. that x 6∈ Γ). Observe that variables of the same name may be declared
in different blocks, provided one is not nested within the other.

7.1.3 Environment Joining

At meet points in the control-flow graph of a statement block the typing environments
from each branch must be joined together. If Γa and Γb are type environments then their
join, denoted Γa t Γb, is a single environment carefully constructed from them. This
join operator is defined as follows:

Γa t Γb = {x 7→ (Ta ∨ Tb) | x 7→Ta ∈ Γa ∧ x 7→Tb ∈ Γb}

Every variable defined in both environments is bound in their join to the union
of its type in each environment. The following illustrates a situation where joining is
necessary:

1 function f(int|null x) -> (int r):

2 //
3 if x is null:
4 return 0

5 else:
6 x = x + 1

7 //
8 return x

The pre-environment for the return statement is formed from the post-environments
of the true- and false-branches of the conditional. The former is {x 7→ void} and the
latter is {x 7→ int} and the resulting join is {x 7→ int}.

7.2 Type Refinement

In certain circumstances a runtime type test may result in type refinement. That is,
where the type of a variable is refined from its current type (e.g. T1) to a more precise
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type (e.g. T2 where T2 ≤ T1). More specifically when a type test “e is T2” holds,
the type of e may be refined to T1 ∧ T2. Likewise, when “e is T2” does not hold,
the type of e may be refined to T1 ∧ ¬T2. Type refinement may only occur when a
type test is used as the conditional expression for an if, while, do-while, assert or
assume statement. Furthermore, an expression e will be refined only if it is a refinable
expression. A refinable expression is a variable access or a field access acting on a
refinable expression. The following illustrates a common scenario:

1 function f(int|null x) -> (int r):

2 //
3 if x is int:
4 return x

5 else:
6 return 0

The initial environment for the body of f() is given by Γ0 = {x 7→ (int ∨ null)}.
In this case, the type of variable x is refined to (int ∨ null) ∧ int in the true branch
(which is equivalent to int) and (int ∨ null) ∧ ¬int in the false branch (which is
equivalent to null) .

7.2.1 Expressions

Type refinement may occur within expressions when a given type test is known to
hold or not. The following illustrates:

1 if x is int && x >= 0:

2 //
3 else:
4 //

Here, the type of variable x is refined to int within x >= 0. Observe, however,
that no refinement occurs on the else branch as the given expression does not capture
all possible integer values.

Since the logical connectives have short-circuiting behaviour, so does type refine-
ment within expressions. That is, the refinement must occur before the expression
where the refined type is required.

7.3 Function and Method Resolution

Look at the rules for determining which function or method is being selected.

• Most precise type selected

• If no unique precise type, then ambiguous
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7.4 Coercions

Look at the rules for when a coercion is permitted or not.
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Chapter 8

Definite (Un)Assignment

The Whiley programming language requires that variables are known at compile time
to be definitely assigned (i.e. that they are defined before used) and, similarly, that final
variables are definitely unassigned at the point of assignment (i.e. that they are assigned
at most once). A conservative approach is taken to determining whether or not these
requirements hold true. This ensures the language can be compiled efficiently, but also
means that some provably safe programs are not valid Whiley programs. In this chap-
ter, we specify the process by which definite assignment and unassignment are deter-
mined. The mechanism underpinning this is a data-flow analysis over the control-flow
graph of a function to determine the assignment status of all local variables.

8.1 Overview

The following illustrates a simple function which will be rejected by the compiler be-
cause it cannot determine definite assignment for all variables. The function is said to
fail definite assignment:

1 function f(int x) -> (int r):

2 int y

3 //
4 if x < 0:

5 y = 1

6 //
7 return x + y

In the above program, variable y is not definitely assigned before its use in the
return statement. This is because there is an execution path through the function which
reaches the return statement and on which variable y is not defined (see Figure 8.1).
In fact, there are two possible execution paths through this function, but variable y
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x < 0

truefalse

y = 1

return x + y

Figure 8.1: Control-Flow Graph for function f(). On the bold path, y is undefined.

is only defined on one of them. Observe that, since it is a parameter, variable x is
automatically considered to have been defined on entry to the function.

In contrast, the following illustrates a simple function which will be rejected by the
compiler because it cannot determine a final variable is definitely unassigned at the
point of assignment:

1 function g(int x) -> (int r):

2 //
3 final int y = 0

4 //
5 if x < 0:

6 y = 1

7 //
8 return y

In the above program, the final variable y is not definitely unassigned at the as-
signment on line 5. In other words, there is an execution path through the function on
which variable y is assigned more than once. Such a path violates the intention of the
final modifier, which dictates that a variable should be assigned at most once.

8.1.1 Loops

The treatment of loops with respect to definite (un)assignment warrants special atten-
tion. Recall the mechanism for determining definite (un)assignment is conservative.
In the context of loops, it simply assumes every loop can be executed zero or more times
(i.e. even if this is not correct). From the perspective of definite assignment, this im-
plies that a variable assignment within a loop may not occur. From the perspective of
definite unassignment, this implies that a variable assignment within a loop may occur.
The following illustrates:
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1 function f(int x) -> int:
2 int y

3 //
4 while x < 0:

5 y = 1

6 x = x + 1

7 //
8 return x + y

The above function fails definite assignment because variable y is not defined
when zero iterations of the loop are executed (e.g. when x==0 on entry). In contrast,
the following illustrates a function which fails definite unassignment:

1 function g(int x) -> int:
2 final int y = 0

3 //
4 while x < 0:

5 y = 1

6 x = x + 1

7 //
8 return x + y

The above function fails definite unassignment because variable y is defined more
than once when one or more iterations of the loop are executed (e.g. when x<0 on
entry). To illustrate the conservative nature of definite assignment, consider this vari-
ation:

1 function ten() -> int:
2 int x = 0

3 int y

4 //
5 while x < 10:

6 y = 1

7 x = x + 1

8 //
9 return y

Here, it can be shown that y==1 must hold when the return statement is reached.
Nevertheless, this function fails definite assignment because of the assumption that
the loop executes zero or more iterations.

8.1.2 Infeasible Paths

Functions and methods may contain infeasible paths which are valid execution paths
that, in practice, cannot be executed. The mechanism for checking definite (un)assignment
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assumes for simplicity that any valid path can be executed. This means that some
programs will fail definite assignment, even though they can be shown as safe. The
following illustrates such a program:

1 function abs(int x) -> int:
2 int y

3 //
4 if x >= 0:

5 y = x

6 //
7 if x < 0:

8 y = -x

9 //
10 return y

This function contains four valid execution paths which can be denoted by ff, tf,
ft, tt where, for example, tf represents the path where the first condition evaluates
to true and the second to false. However, it is easy to see that execution paths ff

and tt are infeasible. Furthermore, that on the other two paths, tf and ft, variable
y is definitely assigned at the return statement. Despite this, the above function fails
definite assignment because the mechanism considers all valid paths whilst ignoring
infeasible execution paths.

8.1.3 Partial Assignments

A variable will never be considered definitely assigned after the application of one
or more partial assignments. In contrast, a variable is no longer considered definitely
unassigned in such case. The following illustrates a program which fails definite as-
signment even though it can be shown as safe:

1 type Point is {int x, int y}

2

3 function Point(int x, int y) -> Point:

4 Point p

5 p.x = x

6 p.y = y

7 return p

In the above program, the variable p can be shown as definitely assigned at the
return statement. Nevertheless, the conservative mechanism for checking definite
assignment will reject this program because variable p is initialised via partial assign-
ments.
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8.2 Description

Definite assignment is defined over the control-flow graph of a code block, such as a
requires or ensures clause, or the body of a function or method. Appendix §??
details the process for constructing a control-flow graph from a block of code.

Definite assignment considers the set of all valid paths in a control-flow graph. A
valid path is a path through the graph starting from its root. Every vertex in the graph
is associated with a set of variables which are defined at that vertex, as well as those
which are used at that vertex. A variable x is said to be definitely assigned on entry to
a vertex v if, for every valid path which includes v, some ancestor vertex u exists on
which x is defined.

8.2.1 Definitions and Uses

A variable definition occurs at a vertex v which contains a direct assignment (recall §5.2.2),
or an initialisation of (recall §5.2.6), one or more variables. Assignments to fields, ar-
ray elements or dereferenced references are not direct and do not define variables. A
vertex may define multiple variables if it corresponds to a multiple assignment which
directly assigns those variables. Finally, the parameters of a function, method or in-
variant block are treated as being defined on entry.

A variable use occurs at a vertex v which directly refers to that variable in some
expression other than an LVal. However, referring to a variable indirectly through a
dereference expression does not constitute a variable use.
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Chapter 9

Errors and Warnings

When the Whiley compiler encounters an invalid program it will report an error. In
contrast, when it encounters something undesirable in an otherwise valid program, it
may report a warning. This chapters details the complete list of error messages and
warnings which can be reported for a Whiley program.

9.1 Overview

9.2 Parse Errors

9.3 Declarations

Declarations are top-level entities in a source file, and their syntax is defined in §3.

9.3.1 “Cyclic Constant Declaration” (E301)

A cyclic constant declaration occurs when a constant declaration refers to itself, either
directly or indirectly. This is an error because constants must be evaluated at compile
time.

Example. The following illustrates several cyclic constant declarations:

1 constant const1 is 1 + const1

2

3 constant const2 is 1 + const3

4 constant const3 is 1 + const2
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Here, all three constant declarations are cyclic. The declaration for const1 has a direct
cycle, because its definition refers to itself. The declaration for const2 has an indirect
cycle, because its definition refers to const3 which, in turn, refers back to const2.

9.3.2 “Reference Not Permitted in Function” (E302)

A reference not permitted in function error occurs when an attempt is made to declare
or use a variable of reference type in a function (as opposed to a method). Functions
in Whiley must be free from side-effects — i.e. they must be pure. Thus, the potential
side-effects made possible through the use of references is not permitted.

Example. The following illustrates a very simple example:

1 function f(&int x) -> (&int r):

2 return x

Here, function f() accepts a parameter x of reference type &int, which is not per-
mitted. In this case the function does not, in fact, exhibit any side-effects; nevertheless,
the function will currently be rejected.

9.3.3 “Reference Operation Not Permitted in Function” (E303)

A reference operation not permitted in function error occurs when an attempt is made
to operate on a variable of reference type in a function (as opposed to a method).
Functions in Whiley must be free from side-effects — i.e. they must be pure. Thus, the
potential side-effects made possible through the use of references is not permitted.

Example. The following illustrates a very simple example:

1 function f(int x) -> (int r):

2 int y = x

3 return *(&y)

Here, function f() obtains a reference to local variable y and then immediately
dereferences it, neither of which is permitted. In this case the function does not, in
fact, exhibit any side-effects; nevertheless, the function will currently be rejected.

9.3.4 “Method Invocation Not Permitted In Function” (E304)

A method invocation not permitted in function error occurs when an attempt is made to
call a method from a function (as opposed to another method). Functions in Whiley
must be free from side-effects — i.e. they must be pure. Thus, the potential side-effects
made possible through the method call are not permitted.
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Example. The following illustrates a very simple example:

1 method g(int x) -> (int y):

2 return x

3

4 function f(int x) -> (int r):

5 return g(x)

Here, function f() accepts a parameter x and passes it through a call to method
g(). In this case method g() does not, in fact, exhibit any side-effects; nevertheless,
the method call will be rejected.

9.3.5 “Insufficient Return Values” (E305)

An insufficient return values error occurs when a return statement is encountered
which does not provide as many return values as declared by the enclosing function
or method.

Example. The following illustrates two simple examples:

1 method g(int x) -> (int y, int z):

2 return x+1

3

4 function f(int x) -> int:
5 return

Here, method g() is required to return two values but only one is actually being
returned. Likewise, function f() is required to return one value but none are actually
being returned.

9.3.6 “Too Many Return Values” (E306)

A too many return values error occurs when a return statement is encountered which
provides more return values than declared by the enclosing function or method.

Example. The following illustrates two simple examples:

1 method g(int x):

2 return x

3

4 function f(int x) -> int:
5 return x,x+1

Here, method g() is required to return zero values but one is actually being re-
turned. Likewise, function f() is required to return one value but two are actually
being returned.
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9.4 Types

9.4.1 “Subtype Error” (401)

A subtype error arises when an attempt is made to use an expression of type T in a
position where an expression of type S is expected, and T is not a subtype of S. This is
a common error precisely because it can occur in a large number of different situations.

Example. The following illustrates an example:

1 function f(int x) -> (int r):

2 if x:

3 return 0

4 else:
5 return 1

Here, variable x has type int but is being used in a position (i.e. as the condition
of the if-statement) which expects a type bool. Another example is as follows:

1 function g(int[] items) -> (int r):

2 return items

Here, variable items has type int[] but is being used in a position (i.e. as the
return value) which expects a type int.

9.4.2 “Incomparable Operands” (402)

9.4.3 “Record Type Required” (403)

9.4.4 “Record Missing Field” (404)

9.5 Statements

Statements are used frequently in a Whiley program, and their syntax is defined else-
where (see 5). The error messages reported in this section are those related to specific
statement forms. Other, more general, errors can also be reported for a statement (e.g.
type errors, §9.4) and are discussed elsewhere.

9.5.1 “Invalid LVal” (E501)

An invalid lval error occurs when an invalid expression is used on the left-hand side of
an assignment. Only expressions which are also lval’s maybe used in such a situation
(see §5.2.2).
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Example. The following illustrates two invalid lval’s:

1 function f(int x):

2 1 = x // constant not valid lval
3 x+1 = x // arithmetic expression not valid lval

The first assignment statement is invalid because one cannot assign to a constant.
The second is invalid because one cannot assign to an arithmetic expression.

9.5.2 “Invalid Destructuring LVal” (E502)

An invalid destructuring lval error occurs when a destructuring assignment is used on
the left-hand side, but the right-hand side returns an incorrect number of values.

Example. The following illustrates an invalid destructuring LVal:

1 function f(int x, int y) -> int:
2 return x+y

3

4 function g(int x, int y) -> int:
5 x,y = f(x,y)

6 return x - y

Here, the invocation of f() in g() uses an invalid destructuring assignment be-
cause f() returns one value, but the assignment expects two.

9.5.3 “Variable Already Defined” (E503)

A variable redefinition error occurs when a variable is declared with a name matching
another variable already in scope. This is an error because it is not permitted for one
variable to shadow another.

Example. The following illustrates an example of a variable redefinition:

1 function sum(int[] items) => int[]:
2 int i = 0

3 int r = 0

4 //
5 while i < |items|:

6 //
7 int r = items[i]

8 i = i + 1

9 //
10 return r
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Here, the while loop attempts to declare a variable r, but another variable r was
already declared beforehand.

9.5.4 “Unreachable Code” (E504)

An unreachable statement error arises in a function or method when no possible execu-
tion path could reach them.

Example. The following illustrates some unreachable code:

1 function abs(int x) -> int:
2 //
3 if x < 0:

4 return -x

5 else:
6 return x

7 //
8 return 0 // unreachable

Here, the final return statement can never be reached by any execution path
through the abs() function. This is considered an error because it indicates some-
thing undesirable which may not have been intended.

9.5.5 “Branch Always Taken” (E506)

A branch always taken error occurs when a conditional branch is determine to always
evaluate to either true or false.

Example. The following illustrates a branch always taken:

1 function f(int x) -> int:
2 if x is int:
3 return x

4 else:
5 return -1

Here, the condition x is int always evaluates to true and, hence, the true branch
of this conditional is always taken, whilst the false branch is never taken.

9.5.6 “Break Outside of Loop” (E507)

A break outside loop error occurs when a break statement is given which is not con-
tained within one or more loops. This is an error because the break statement is used
specifically to exit a loop early, and must be contained within the loop to be exited.
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Example. The following illustrates a break outside of a loop:

1 function f(int x) -> int:
2 break
3 return x

Here, the break statement is meaningless as it is not associated with a loop.

9.5.7 “Duplicate Default Label” (E508)

A duplicate default label error occurs when a switch statement includes more than one
default label. This is an error because at most one default is permitted.

Example. The following illustrates an example of a duplicate default label:

1 function f(int x):

2 switch x:

3 case 0:

4 return 0

5 default:
6 return 1

7 default:
8 return 2

Here, the switch statement has two default labels. This must be an error as,
otherwise, it would be ambiguous as to which executed.

9.5.8 “Duplicate Case Label” (E509)

A duplicate case label error occurs when a switch statement includes more than one
case label matching the same value. This is an error because at most one case match-
ing a given value is permitted.

Example. The following illustrates an example of a duplicate case label:

1 function f(int x):

2 switch x:

3 case 0:

4 return 0

5 case 0,1:

6 return 1

7 default:
8 return 2

Here, the switch statement has two case labels, both of which match the value 0.
This must be an error as, otherwise, it would be ambiguous as to which executed.
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9.6 Expressions

Expressions typically form the bulk of a Whiley program, and their syntax is defined
elsewhere (see §6). The error messages reported in this section are those related to
specific expression forms. More general errors can also be reported for an expression,
such as type errors (see §9.4).

9.6.1 “Variable Possibly Uninitialised” (E601)

A variable possibly uninitialised error occurs when a variable may be used without be-
ing defined. That is, when a simple path exists through the control-flow graph of a
function or method from that variable’s declaration to a use which contains no defini-
tion for that variable. This error is reported as part of the definite assignment checking
performed during compilation (see §8).

Example. The following illustrates a variable which is possibly uninitialised:

1 function f(int x) => int:
2 int y

3 return x + y

Here, variable y is definitely uninitialised in the expression “x + y”. For more
examples of variables which are possibly uninitialised, see §8.

9.6.2 “Unknown Variable” (E602)

An unknown variable error occurs when an attempt is made to access a variable which
has not been declared in the current scope. All variables must be declared before they
can be used.

Example. The following illustrates an unknown variable:

1 function f(int x) -> int:
2 return x+y

Here, the return statements refers to an unknown variable y. In contrast, the
reference to variable x is valid because x has been declared within scope.

9.6.3 “Unknown Function or Method” (E603)

An unknown function or method error occurs when an attempt is made to access a func-
tion or method which is not visible in the current scope. Functions and methods which
are not declared in the same file as the invocation can be brought into the current scope
using import statements.
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Example. The following illustrates an invocation of an unknown function or method:

1 function f(int x) -> int:
2 return g(x)

Here, function g() is not defined in the current source file and has not been brought
into scope through an import statement.

9.6.4 “Ambiguous Coercion” (E604)

An ambiguous coercion error occurs when the target of a cast expression is uncertain.
That is, when attempting to cast a value to a given type T, but there is more than one
way this can be achieved. This error is reported as part of the coercion check performed
during compilation.

Example. The following illustrates an ambiguous coercion:

1 type Ambiguous is { int f1, real f2} | { real f1, int f2 }

2

3 function f(int x, int y) -> Ambiguous:

4 return (Ammbiguous) {f1: x, f2: y}

The cast is ambiguous here because it’s unclear whether, for example, {f1: 1, f2: 2}

should become {f1: 1.0, f2: 2} or {f1: 1, f2: 2.0}.
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Glossary

access control Mechanisms for restricting the visibility of named declarations. 19

block comment A block comment begins with “/*” and continues until the end-of-
comment marker “*/”. 12

boolean expression An expression which evaluates to a value of type bool. 20, 38,
40, 45, 88

compilation group A group of one or more source files being compiled together. 17,
87

compilation unit A single unit of compilation. In Whiley, this includes source files
and also binary WyIL files. 17–19

compile time The point in time at which a given compilation group is compiled into
binary form.. 71, 77

compound statement A statement (e.g. if, while, etc) which may contain blocks of
other statements. 37

constant declaration A source-level declaration which associates a name with a con-
stant expression. The full name of the declared entity is determined from the
package and name of the enclosing source file.. 18, 77

contractive A type is contractive if it does not describe an infinite series of self appli-
cations.. 21

control-flow graph A directed graph representation of a block of code (e.g. a function
or method body) with which one can reason about the set of possible execution
paths. 75, 88

declaration A declaration defines a new named entity within its enclosing source file..
19, 20, 87

declaration modifier A declaration modifier provides additional meaning to a decla-
ration.. 19
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default package The top-level package which has no name, and is considered to be a
“global” package.. 18

definite assignment Definite assignment is the process of checking that every vari-
able is defined before being used.. 90

execution path A sequence of statements through a program, function or method
which may be taken during execution.. 71, 72, 87

expression A combination of constants, variables and operators that, when evalu-
ated, produce a single value. Expressions in certain circumstances may have
side effects. 49, 87, 89, 90

fault A fault is raised when an unrecoverable error in the program occurs. For a
verified program, no faults are possible except to indicate an out-of-memory
failure.. 38, 40, 53

foreign function interface A mechanism provided to enable inter-operation between
Whiley source files and source files written in other languages.. 20

function declaration A source-level declaration which defines a named function. The
full name of the declared entity is determined from the package and name of the
enclosing source file.. 18

indentation syntax A lexical organisation of source files where indentation is signifi-
cant and is used to group statements and blocks. 11

infeasible path A valid path through the control-flow graph of a function or method
for which no valid parameter values exist which will let it be executed. 73

intersection type A type formed by combining two or more types together (e.g. [int]&[any]),
such that it includes any value contained in both. 25

line comment A line comment begins with “//” and continues until the end of line. 12

literal A source-level entity which describes a value of primitive type. 13

loop invariant A boolean expression which must hold on every iteration of a loop.
21, 23, 43, 47

method declaration A source-level declaration which defines a named method. The
full name of the declared entity is determined from the package and name of the
enclosing source file.. 18

name mangling The process of encoding information (e.g. about type parameters)
within the exported name of a declaration.. 20
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name resolution The process of determining the fully qualified name of an identifier
within a source file. Names are first resolved within the same source file, and
then by searching the list of imported entities in reverse order. 19

negation type A type formed from another (e.g. !int), such that it includes any value
not contained in the other. 25

overloading Overloading occurs when two entities in the same category exist with
the same name, and is permitted only when their type allows for disambigua-
tion.. 18

package A unit of hierarchical organisation within the Whiley namespace.. 17

postcondition A logical condition over the parameters and returns of a function or
method which must be true immediately after execution of that function or
method.. 21–23, 32, 45

precondition A logical condition over the parameters of a function or method which
must be true immediately prior to execution of that function or method.. 21–23,
32

refinable expression An expression which may be refined by a runtime type test. A
refinable expression is either a variable access or a field access on a refinable
expression. 69

safety critical system A system which operates in a high-risk setting where failure
can lead to loss of life, injury, significant damage or environmental harm. 7

side-effect A side-effect refers to the mutation of state that existed before a function or
method was called, or the production of external effects through I/O. In Whiley,
functions must be side-effect free, meaning they are not permitted to modify
pre-existing state or interact through I/O. 21, 78

source file A file in which source code is located. Source files for the Whiley pro-
gramming language have the extension .whiley. In Whiley, source files must
be compiled into a binary form before they can be executed.. 11, 17, 20–22, 32,
77, 87–90

statement An program instruction which has an effect on the environment when ex-
ecuted, but does not produce a value. 37, 89

statement block A sequence of zero or more consecutive statements with the same
indentation. 12, 37, 45

type An abstract entity which represents the set of values a given variable may hold,
or a given expression may evaluate to.. 25, 88–90
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type declaration A source-level declaration which associates a name with a type de-
scriptor. The full name of the declared entity is determined from the package
and name of the enclosing source file.. 18

type descriptor A source-level description of an underlying type. Unlike many lan-
guages, type descriptors and types are quite distinct in Whiley as, for example,
two distinct descriptors may describe the same underlying type. 25, 89

union type A type formed by combining two or more types together (e.g. int|null),
such that it includes any value contained in either. 25

value A value is an instance of a given type and permits a specific set of operations.
Examples include: the integer value 1; the list value [1,2]; and the null value..
49

variable declaration A statement which declares one or more variable(s) for use in
a given scope. Each variable is given a type which limits the possible values it
may hold, and may not already be declared in an enclosing scope. 41, 90

variable definition A statement in which a variable is defined in its entirety, as op-
posed to a partial assignment of some part (e.g. field or array element). This
concept is important in the process of checking definite assignment. 75

variable initialiser An optional expression used to initialise variable(s) declared as
part of a variable declaration. 41

variable use A statement in which a variable is directly referred to in an expression
other than an LVal. This concept is important in the process of checking definite
assignment. 75

verifying compiler A compilers which employs automated mathematical and logical
reasoning to check the correctness of the programs that it compiles. 7

WyIL file A compiled (i.e. binary) form of a Whiley source file. 17, 87
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