
Getting Started with Whiley
David J. Pearce

June 2, 2022

Abstract

The aim of this document is to provide a short introduction to the Whiley programming lan-
guage, in order to get you up and running quickly. However, it is not intended to be a definitive
reference. We’ll walk through a number of simple examples illustrating the most interesting
features of Whiley, and show you how to get it up and running. We will be assuming some
rudimentary knowledge of programming.

Contents
1 Introduction 3

1.1 Objectives . 3
1.2 Installation . 3

2 Quick Walkthrough 5
2.1 Booleans and Numbers . 5
2.2 Arrays . 5
2.3 Records . 6
2.4 Multiple Returns . 6
2.5 Strings and Characters . 7

3 Flexible Types 8
3.1 Flow Typing . 8
3.2 Recursive Types . 9
3.3 Structural vs Nominal Types . 9
3.4 Coercions . 10
3.5 Subtyping . 11

4 Example: Minesweeper 13
4.1 Squares . 14
4.2 Board . 15
4.3 Game Play . 16
4.4 Simple Text Interface . 18
4.5 Graphical User Interface . 20

5 Verification 22
5.1 Preconditions and Postconditions . 22
5.2 Data Type Invariants . 23
5.3 Quantification . 23
5.4 Loop Invariants . 24
5.5 Strategies for Loop Invariants . 24
5.6 Function Invocation . 25
5.7 Explicit Assumptions . 26

1

6 Example: IndexOf Function 27
6.1 Specifying Property 1 — Return Valid Index . 27
6.2 Specifying Property 2 — Return Null if No Match 27
6.3 Specifying Property 3 — Return Least Index . 28
6.4 Working Implementation . 28
6.5 Verified Implementation . 28

7 Example: Microwave Oven 30
7.1 Overview . 30
7.2 Microwave State . 30
7.3 Events . 31

A Foreign Function Interface 32
A.1 Overview . 32

B Verification Conditions 32

Acknowledgements
The author would like to thank A/Prof Lindsay Groves and Prof. Gary Leavens for helpful comments
on drafts of this document.

2

1 Introduction
The Whiley programming language has been in active development since 2009. The language was
designed specifically to help the programmer eliminate bugs from his/her software. Whiley allows
programmers to write specifications for their functions, which are then checked by the compiler.
For example, here is the specification for the max() function which returns the maximum of two
integers:

1 function max(int x, int y) -> (int z)
2 // must return either x or y
3 ensures x == z || y == z
4 // return must be as large as x and y
5 ensures x <= z && y <= z:
6 // implementation
7 if x > y:
8 return x
9 else:

10 return y

Here, we see our first piece of Whiley code. This declares a function called max which accepts
two integers x and y, and returns an integer z. The body of the function simply compares the two
parameters and returns the largest. The two ensures clauses form the function’s post-condition,
which is a guarantee made to any caller of this function. In this case, the max function guarantees
to return one of the two parameters, and that the return will be as large as both of them. In plain
English, this means it will return the maximum of the two parameter values.

When verification is enabled the Whiley compiler will check that every function meets its spec-
ification. For our max() function, this means it will check that body of the function guarantees to
return a value which meets the function’s post-condition. To do this, it will explore the two execution
paths of the function and check each one separately. If it finds a path which does not meet the post-
condition, the compiler will report an error. In this case, the max() function above is implemented
correctly and so it will find no errors. The advantage of providing specifications is that they can
help uncover bugs and other, more serious, problems earlier in the development cycle. This leads to
software which is both more reliable and more easily maintained (since the specifications provide
important documentation).

1.1 Objectives
Although the primary purpose of Whiley is to allow us to write specifications on functions, we will
not talk about that again until later in the document. Furthermore, we will not consider this aspect
in detail and, for more, the reader is referred to our tutorial on verification [?].

The primary goal of this article is to introduce the core language of Whiley without worrying
about verification (since this presents many challenges and adds complexity). Indeed, it is only
once we have understood the basics of Whiley that we will will be ready to investigate verification.
Furthermore, Whiley’s core language turns out to be rather interesting even without considering
verification!

1.2 Installation
There are currently three ways to get setup with the Whiley programming language:

• Web Browser. By far the simplest way to get started with Whiley is by running it in your
web browser (see Figure 1). Go to http://whileylabs.com/ and you can get started
straight away!

• Development Kit. For those familiar with the command-line, installing the Whiley Develop-
ment Kit (WDK) is another option. Furthermore, you’ll be able to explore the source code

3

http://whileylabs.com/

Figure 1: Compiling a Whiley program using a web browser (Mozilla Firefox). At the moment, the
user’s program is not correct and the system is reporting this as an error in red.

for the Whiley system, and see how it all works! To do this, visit http://whiley.org/
downloads/.

More information of getting started with Whiley can be found at http://whiley.org/
getting-started/. Finally, the Whiley system is completely free and released under an open
source license (BSD), and you can get the latest code from http://github.com/Whiley.

4

http://whiley.org/downloads/
http://whiley.org/downloads/
http://whiley.org/getting-started/
http://whiley.org/getting-started/
http://github.com/Whiley

2 Quick Walkthrough
This section provides a quick walk through of the main concepts and ideas in the Whiley language.
Through a series of short examples, we’ll introduce the basic building blocks of the language.

2.1 Booleans and Numbers
As found in many languages, Whiley supports a range of primitive datatypes for representing boolean,
integers, bytes, etc. Of these, the most commonly used are:

• Booleans are denoted by the type bool. This is the simplest of the primitive datatypes, and
has only two possible values: true or false.

• Integers are denoted by the type int. Integers in Whiley are unbounded. This means that, in
theory at least, a variable of type int can take on any possible integer value; this differs from
many other languages (e.g. Java), which limit the number of possible values (e.g. following
32-bit two’s complement).

A very simple example which illustrates the int and bool types is the following:

1 function isLessThan(int x, int y) -> bool:
2 //
3 if x < y:
4 return true
5 else:
6 return false

This declares a simple function which returns true if the first parameter, x, is less than the
second, y, and false otherwise.

?
Indentation Syntax. From the above example you should notice that Whiley, unlike many
languages, does not use curly braces (i.e. { ... }) to demarcate blocks of code. Instead,
Whiley uses indentation syntax which was popularised by the Python programming lan-
guage. The start of a new code block is signalled by a preceding : on the previous line.
The new block must be indented by at least one space (the actual amount doesn’t matter)
and all subsequent statements with the same indentation are included.

2.2 Arrays
Like many modern programming languages, Whiley provides a built-in array type for representing
collections of data. The following illustrates a short function which multiplies a vector by a scalar:

1 function vectorMultiply(int[] vector, int scalar) -> int[]:
2 //
3 int i = 0
4 while i < |vector|:
5 vector[i] = vector[i] * scalar
6 i = i + 1
7 return vector

This illustrates a few of the common array operations. Firstly, the size of an array is obtained
using the length operator (i.e. |vector| returns the length of vector). Secondly, the while loop is
used to iterate over the elements of the array, whilst the array access operator, vector[i], returns
the element at index i.

Arrays can be constructed using either array initialisers or array generators. The following
illustrates both syntaxes being used to call the function above:

5

1 // Array initialiser
2 int[] vec1 = [1,2,3]
3 int[] r1 = vectorMultiply(vec1,2)
4 assert r1 == [2,4,6]
5 //
6 // Array generator
7 int[] vec2 = [2; 4]
8 int[] r2 = vectorMultiply(vec2,2)
9 assert r2 == [4,4,4,4]

The array initialiser syntax simply constructs an array using the values as provided. The array
generator syntax, [e; n], constructs an array containing n elements whose value is given by e.

2.3 Records
Aside from collection types, Whiley also provides records for grouping items together. Records are
similar to structs (as found in C) and objects (as found in JavaScript). A record is constructed
from one or more fields, each of which has a unique name and type. For example, the following
defines a simple record type for representing 2D points and a function for translating their position:

1 // A point has two integer fields named x and y
2 type Point is {int x, int y}
3

4 // Translate a given point by an x and y delta
5 function translate(Point p, int dx, int dy) -> Point:
6 return {
7 x: p.x + dx, // new x value is old value plus dx
8 y: p.y + dy // new y value is old value plus dy
9 }

Here, a user-defined type named Point has been declared. This is a record type containing two
int fields, x and y. In the translate() function, a record literal is used to construct a new Point

to be returned.
Records are an important mechanism for giving meaning to data in Whiley. For example, con-

sider the following declaration of a rectangle:

1 // A point has two integer fields named x and y
2 type Point is {int x, int y}
3

4 // A rectangle has a position, and a width and height
5 type Rectangle is {
6 Point position, // position of top-left corner
7 int width, // width of the rectangle
8 int height // height of the rectangle
9 }

Here, we see that a rectangle has a position, a width and a height. The names of the fields are
important for conveying their meaning in the real world.

2.4 Multiple Returns
Unlike many programming languages, Whiley supports multiple return values. This can be useful as
a lightweight mechanism for grouping data. For example, the following illustrates a simple function
which swaps the order of its parameters:

6

1 function swap(int x, int y) -> (int rx, int ry):
2 return y, x

Here, we see that the return type is a tuple and this provides a convenient and lightweight mech-
anism for returning multiple values. Following on from this, Whiley also supports destructuring
syntax for handling multiple return values (e.g. as found in Python). The following example illus-
trates this:

1 int x
2 int y
3 ...
4 x, y = swap(x,y) // destructuring assignment
5 ...

Here, we see that variables x and y are assigned their respective component of the return values
from swap. Again, this syntax simplifies the use of functions with multiple return values.

2.5 Strings and Characters
Unlike many programming languages, Whiley does not provide explicit data types representing
strings and characters. The reason for this is that such data types can already be encoded within the
language and, by doing so, we can easily support the full range of different encodings (e.g. ASCII
versus UTF-8, etc). In Whiley, a string is simply a list of integers. The following example illustrates
the well-known replace() function:

1 import string from std.ascii
2 import char from std.ascii
3

4 function replace(string str, char old, char n) => string:
5 //
6 int i = 0
7 while i < |str|:
8 if str[i] == old:
9 str[i] = n

10 i = i + 1
11 return str

This uses the standard ASCII representation of strings and characters, which are imported from
the standard library.

7

3 Flexible Types
The previous section introduced us to the basic types found in Whiley, such as integers (int) and
booleans (bool). However, unlike many languages, Whiley provides a flexible and powerful ap-
proach to typing which go well beyond the basic forms. In this section, we will examine this in more
detail.

3.1 Flow Typing
To improve the programmer experience and reduce unnecessary tedium, Whiley employs a flow
typing system. What this means is that the type of a variable can vary at different points within a
function. To make this work, Whiley employs union types [1;2] along with variable retyping. The
following example illustrates how this works (where the body of indexOf() is left out for brevity):

1 import std.array
2

3 function indexOf(int[] items, int item) -> null|int:
4 int i = 0
5 while i < |items|:
6 if items[i] == item:
7 return i
8 i = i + 1
9 return null

10

11 function split(int[] items, int item) -> int[][]:
12 int|null idx = indexOf(items,item)
13 // idx has type null|int
14 if idx is int:
15 // idx now has type int
16 int[] below = array.slice(items,0,idx)
17 int[] above = array.slice(items,idx,|items|)
18 return [below,above]
19 else:
20 // idx now has type null
21 return [items] // no occurrence

Here, indexOf() returns the first index of an item in an array of items, or null if there is none.
The type null|int is a union type, meaning it is either an int or null. The split() function
splits an array into two pieces based on the first occurrence of a given item, or leaves the array as is
otherwise. It calls indexOf() to determine the first occurrence of item in items.

In the above example, Whiley’s flow typing system seamlessly ensures that null is never deref-
erenced. This is because the type null|int cannot be treated as an int. Instead, one must first
check it is an int using a type test, such as “idx is int”. Whiley automatically retypes idx to
int when this is known to be true, thereby avoiding any awkward and unnecessary syntax (e.g. a
cast as required in many languages).

?
Null References. In many languages (e.g. C/C++, Java, etc) the use of null is a sig-
nificant source of error [3]. For example, in Java dereferencing the null value gives rise
to a NullPointerException, which is regarded as the most common form of error in
Java [?]. The issue is that, in such languages, one can treat nullable references as though
they are non-null references [4]. In the research literature, there have been many proposals
to solve this problem using static type systems [5;6;7;8;9;10;11;12]. Unfortunately, at the time of
writing, very few languages have incorporated such ideas.

8

? Intersections and Negations. Whiley also supports so-called intersection and negation
types. Whilst these can be expressed directly in source code, they are generally less useful
than unions.

3.2 Recursive Types
To represent tree-like structures, Whiley provides recursive types which are similar to the algebraic
data types found in functional languages (e.g. Haskell, ML, etc). For example:

1 // A linked list is either the empty list or a link
2 type LinkedList is EmptyList | Link
3

4 // The empty list contains no links
5 type EmptyList is null
6

7 // A single link in a linked list
8 type Link is {int data, LinkedList next}
9

10 // Return the length of a linked list (i.e. the number of links it contains)
11 function length(LinkedList l) -> int:
12 if l is null:
13 return 0 // l now has type null
14 else:
15 return 1 + length(l.next) // l now has type int data, LinkedList next

Here, LinkedList is a recursive type representing a linked list (i.e. a sequence of zero or
more links). The empty list is defined as null, whilst each link contains a data field. The type
LinkedList is defined in terms of itself (i.e. it is recursive) and describes linked lists of arbitrary
size.

?
Value Semantics. All compounds structures in Whiley are passed by value, including
recursive types. This differs from common languages (e.g. Java), where linked structures
are typically composed from references to link objects. This means, for example, that
linked structures in such languages can share substructures, leading to subtle and hard-to-
find bugs. In Whiley linked structures, such as LinkedList, can never share substructure.

The above example also serves as another illustration of flow typing in Whiley. More specif-
ically, on the false branch of the type test “l is null”, variable l is automatically retyped to
{int data, LinkedList next} — thus ensuring the subsequent dereference of l.next is safe.
No casts are required as would be needed for a conventional imperative language (e.g. Java). Finally,
like all compound structures, the semantics of Whiley dictates that recursive data types are passed
by value (or, at least, appear to be from the programmer’s perspective).

3.3 Structural vs Nominal Types
Statically typed languages, such as Java, employ nominal typing for recursive data types. This means
that two otherwise identical types with different names are considered distinct and, for example, a
variable of one type cannot flow into the other. In contrast, Whiley employs structural typing of
records [?] to give greater flexibility. This means that the name of a type is, generally speaking, not
important. Instead, identical types (i.e. those with identical structure) with different names are still
considered identical in Whiley. For example:

9

1 // Define the notion of a ”rectangle”
2 type Rectangle is { int x, int y, int width, int height }
3 // Define the notion of a ”bounding box”
4 type BoundingBox is { int x, int y, int width, int height }
5

6 // Define a function for computing the area of a rectangle
7 function area(Rectangle rect) -> int:
8 return rect.width * rect.height

In this example, the types Rectangle and BoundingBox are identical and can be used inter-
changeably. For example, if we have a variable of type BoundingBox, we can safely pass it to the
area() function above to compute its area.

3.4 Coercions
A coercion converts a value of one type into a corresponding value of another type. Many program-
ming languages permit both implicit and explicit coercions, with the latter more commonly referred
to as casting. Implicit coercions occur without explicit direction from the programmer, and are often
considered dangerous because of this.

?
Lossless Coercions? The Java programming language attempts to enforce a requirement
that implicit coercions are lossless. Thus, any coercion which may result in a loss of infor-
mation must be made explicit through the use of a cast. Unfortunately, Java does permit
implicit lossy coercions by, for example, allowing int values to be implicitly coerced into
float values — because not every int value can be represented by a float in Java.

To address the issues surrounding implicit coercions, Whiley only permits implicit coercions
which are lossless. That is, which do not result in a loss of information. In contrast, lossy coercions
require an explicit cast be used to “force” the coercion. The following example illustrates:

1 type Link is {int data, LinkedList next}
2 type LinkedList is null | Link
3 type OrderedList is null | { int data, int order, OrderedList next }

Here, we have defined a standard linked list and a specialised “ordered” list. The intuition is
that order < next.order for each node in an OrderedList (although the details of how this
is done are unimportant here). These two types are not considered identical because they have
different structure (i.e. OrderedList has an additional field, order). However, there is still a
subtyping relationship between them (i.e. OrderedList subtypes LinkedList). Thus, an instance
of OrderedList can be used where a LinkedList was expected. For example:

1 function sum(LinkedList l) -> int:
2 if l is null:
3 return 0
4 else:
5 return l.data + sum(l.next)

This defines a simple recursive function for computing the sum of the elements of a LinkedList.
Instances of OrderedList can be passed into this function by coercing them to instances of LinkedList:

1 function sum(OrderedList l) -> int:
2 return sum((LinkedList) l)

10

Here, we have used an explicit coercion (i.e. a cast) from OrderedList to LinkedList. This
must be done explicitly because the coercion is lossy because the field order is discarded during
the coercion.

3.5 Subtyping
An important concept in many modern programming languages is that of subtyping. This defines a
relationship between otherwise different types (i.e. which do not have identical structure). Subtyping
allows data from a variable of one type to flow into a variable of another. However, unlike a coercion,
subtyping does not physically change the value itself.

The most common form of subtyping in Whiley is through the use of union types. Indeed, we
have encountered this already. The following illustrates a very simple example:

1 // A circle is defined by its position and radius
2 type Circle is { int x, int y, int radius }
3

4 // A rectangle is defined by its position and dimensions
5 type Rectangle is { int x, int y, int width, int height }
6

7 // A shape is either a circle or a rectangle
8 type Shape is Circle | Rectangle
9

10 // Determine the area of a shape
11 function area(Shape s) -> int:
12 if s is Rectangle:
13 // case for rectangle
14 return s.width * s.height
15 else:
16 // case for circle
17 return 3 * (s.radius * s.radius)

Here, we see that a Shape is either a Rectangle or Circle. We say that Rectangle and
Circle are subtypes of Shape. The Whiley compiler knows that there are only two possibilities
and, hence, automatically retypes variable s to Circle on the false branch.

?
A useful analogy to help understanding the concept of a subtype is that of a subset. In this
way, we think of types as representing the set of values that their variables may hold. Then,
one type is a subtype of another if its set of values is a subset of the other’s. Conversely, one
type is a supertype of another if its set of values is a superset of the other’s. Furthermore, a
union type “T1 | T2” corresponds to a set union of those values represented by “T1” and
“T2”.

Another situation where subtyping occurs in Whiley is with the types any and void. Specifi-
cally, every type is a subtype of any, whilst every type is a supertype of void. To understand this,
consider the following:

1 function toInteger(any x) -> int:
2 if x is int:
3 return x
4 else if x is any[]:
5 return |x|
6 else:
7 return 0 // default value

11

In this function, parameter x can hold any possible value on entry. It could be an integer, an
array, a record, etc. In this case, we have picked a few examples which we can easily convert into
int values. Note that the type any[] describes all possible arrays, including e.g. instances of
int[], int[][], etc.

12

4 Example: Minesweeper
In this section, we will develop a simple implementation of the well-known Minesweeper game.
Typically the game is played through a graphical user interface, illustrated as follows:

Here, we can see the main aspects of the game. The game board is a two-dimensional grid of
squares. Each square holds nothing or a bomb and is in one of the three states: hidden, exposed or
flagged. An exposed square shows either the total number of bombs in the nine adjacent squares,
referred to as its rank. If an exposed square contains a bomb, then the game is over and the player has
lost. Flagged squares are protected and cannot be exposed unless they are unflagged. The intuition
here is that the player marks those squares believed to contain a bomb.

Let’s analyse the above board. In the following diagram of the above minesweeper game, gray
squares represent hidden squares in the game. For our benefit we’ve split them into two categories:
those which contain a bomb (dark gray); and, those which don’t (light gray):

In our discussion, we’ll use (x, y) to indicate a position on the board where x gives the horizontal
column, and y the vertical row. So, for example, the squares (2, 4), (4, 3) and (6, 4) are all marked
with a flag. Indeed, we can see that the player has correctly flagged the three bombs in these squares,
and that there are seven remaining to be identified and flagged. Of course, unlike us, the player
cannot see exactly where the bombs are. However, he/she can easily determine that the square (2, 6)
must contain a bomb. This is because the exposed square at (1, 4) has a rank of 1, and a bomb is
already flagged at (2, 4). Therefore, there can be no bomb in square (2, 5) as otherwise the rank
of square (1, 4) would be incorrect. Finally, the rank of the square at (1, 5) is 2 with only three
unexposed squares, of which one is known already to contain a bomb and the other is known not to
contain a bomb. Therefore, the (2, 6) must contain a bomb.

The player plays the game by repeatedly selecting a square to expose. When all squares are
exposed, except for those containing bombs, the game is over and the player wins. However, if a

13

square holding a bomb is exposed, then the game is over and the player loses. A blank square is one
with no adjacent bombs. When a blank square is exposed, every adjacent blank square is recursively
exposed.

4.1 Squares
We’re now going to begin implementing the game of Minesweeper in Whiley. To start with, we’ll
implement the game board in Whiley and provide functions for manipulating it; then, we’ll imple-
ment the game-play itself.

The first aspect of the game board we’ll implement is the concept of a square. There are essen-
tially two broad categories of square in the game: exposed squares and hidden squares. Therefore,
our implementation will reflect this. Exposed squares either have a rank or are blank (i.e. have a
rank of zero). Furthermore, they may or may not hold a bomb. We can implement this in Whiley
like so:

1 type ExposedSquare is {
2 int rank, // Number of bombs in adjacent squares
3 bool holdsBomb // true if the square holds a bomb
4 }

Here, we can see that an integer field called rank is used to store the rank of the square. Likewise,
a boolean field called holdsBomb is used to indicate whether or not the square holds a bomb. To
simplify creating values of type ExposedSquare, it is common to additionally provide one or more
constructors. These are functions of the same name which create values of the given type. Here is
our ExposedSquare constructor:

1 // ExposedSquare constructor
2 function ExposedSquare(int rank, bool bomb) -> ExposedSquare:
3 return { rank: rank, holdsBomb: bomb }

Hidden squares may or may not hold a bomb, and may or may not have been flagged. We can
implement this in Whiley as follows:

1 type HiddenSquare is {
2 bool holdsBomb, // true if the square holds a bomb
3 bool flagged // true if the square is flagged
4 }

As before, a boolean field called holdsBomb is used to signal whether or not the square holds a
bomb. Likewise, a boolean field called flagged signals whether or not the square is flagged. Again,
we define a constructor as follows:

1 // HiddenSquare constructor
2 function HiddenSquare(bool bomb, bool flag) -> HiddenSquare:
3 return { holdsBomb: bomb, flagged: flag }

We can now define the concept of a square in our Whiley implementation by combining the
notions of exposed and hidden squares together as follows:

1 type Square is ExposedSquare | HiddenSquare

Here, the type Square is a union of the types ExposedSquare and HiddenSquare. In other-
words, it is either an ExposedSquare or a HiddenSquare. Notice that we don’t provide a con-
structor for Square. This is because a Square is an abstract concept formed from the composition
of two existing types with their own constructors.

14

4.2 Board
Using our above Square data type, we can now define the game board in our Whiley implementation
as follows:

1 type Board is {
2 Square[] squares, // Array of squares making up the board
3 int width, // Width of the game board (in squares)
4 int height // Height of the game board (in squares)
5 }

The main component of Board is the squares array. Although this is a one-dimensional array,
we’ll see shortly that it is treated in a two dimensional way. The remaining fields record the width
and height of the board, which is needed in order to safely manipulate the board. To accompany this
data type, we define a simple constructor as follows:

1 // Create a board of given dimensions which contains no bombs, and
2 // where all squares are hidden.
3 function Board(int width, int height) -> Board:
4 Square[] squares = [HiddenSquare(false,false); width * height]
5 //
6 return {
7 squares: squares,
8 width: width,
9 height: height

10 }

This constructor creates a Board of given width and height containing only hidden squares and
no bombs. Later, we will return to consider how to randomly place bombs on the board.

We’ll now provide some simple helper functions for updating the board. First, we provide a
function to read the Square at a given position on a Board:

1 function getSquare(Board b, int col, int row) -> Square:
2 int rowOffset = b.width * row // calculate start of row
3 return b.squares[rowOffset + col]

This function performs a simple calculation to determine the start of the row in the Board.squares
array. To understand this calculation, we need to view the board in a 1-Dimensional manner, as fol-
lows:

Here, we can see how each row is laid out in the 1-Dimensional Board.squares array. To
calculate the start of a given row, we multiply the row number by the width of the board. Then,
to calculate a given column within that row, we simply add the column number. For example, the
position (3, 2) represents column 3, row 2; therefore, the position in the example board above would
be: (2 ∗ 9) + 3 = 21.

The corresponding function to getSquare() provides a way to change the square at a given
position on the board:

1 // Set the square on a given board at a given position
2 function setSquare(Board b, int col, int row, Square sq) -> Board:

15

3 int rowOffset = b.width * row // calculate start of row
4 b.squares[rowOffset + col] = sq
5 return b

Here, the same calculation is performed as before to determine the actual position within the
Board.squares array. This time, the Board.squares array is updated with the new Square,
and we must return the updated board for this to be visible (i.e. since arrays are passed-by-value).
Notice also that we are not attempting to control how the Board.squares array may be updated.
That is, any Square can be passed into this function, even if it doesn’t make sense in the wider
context of the game. This is because these simple functions provide a general-purpose mechanism
for manipulating a Board.

4.3 Game Play
Having defined the data types for the Minesweeper game, we can use these to implement the actions
of the game. In particular, the user can flag squares and expose squares. We also need to know when
it is game over and the player has either won or lost. The easiest of these is that for flagging squares:

1 // Flag (or unflag) a given square on the board. If this operation is not permitted, then do nothing
2 // and return the board; otherwise, update the board accordingly.
3 function flagSquare(Board b, int col, int row) -> Board:
4 Square sq = getSquare(b,col,row)
5 // check whether permitted to flag
6 if sq is HiddenSquare:
7 // yes, is permitted so reverse flag status and update board
8 sq.flagged = !sq.flagged
9 b = setSquare(b,col,row,sq)

10 //
11 return b

This function checks whether the square on the board is hidden or not. If so, the flagged status
of that square is flipped (i.e. if it was not flagged then it is now, etc). As before, we must return the
updated board in order for any change to be visible.

The next function we’ll implement is that for exposing a square. This requires that the square
to be exposed is not already exposed. Furthermore, in the case of a blank square, then the expose
method is recursively applied to blank squares. An important sub-computation to this process is
that of determining the rank of a given square. That is the number of bombs contained in adjacent
squares. Here is our implementation of this sub-function:

1 function determineRank(Board b, int col, int row) -> int:
2 int rank = 0
3 // Calculate the rank
4 int r = math.max(0,row-1)
5 while r != math.min(b.height,row+2):
6 int c = math.max(0,col-1)
7 while c != math.min(b.width,col+2):
8 Square sq = getSquare(b,c,r)
9 if sq.holdsBomb:

10 rank = rank + 1
11 c = c + 1
12 r = r + 1
13 //
14 return rank

This function iterates through the nine squares which directly surround that specified by col and
row, whilst excluding those which are off the board. The functions Math.min() and Math.max()

16

are imported from the standard library and determine the maximum (resp. minimum) of their argu-
ments. Also, note that we can access the field holdsBomb without determining whether sq is hidden
or not. This is because holdsBomb is contained in both ExposedSquare and HiddenSquare and,
hence, is guaranteed to be present for any Square.

Using the determineRank() function above, we can now specify the following function for
exposing a given square on the board:

1 // Attempt to recursively expose blank hidden square, starting from a given position.
2 function exposeSquare(Board b, int col, int row) -> Board:
3 // Check whether is blank hidden square
4 Square sq = getSquare(b,col,row)
5 int rank = determineRank(b,col,row)
6 if sq is HiddenSquare:
7 // yes, so expose square
8 sq = ExposedSquare(rank,sq.holdsBomb)
9 b = setSquare(b,col,row,sq)

10 if rank == 0:
11 // now expose neighbours
12 return exposeNeighbours(b,col,row)
13 //
14 return b
15

16 // Recursively expose all valid neighbouring squares on the board
17 function exposeNeighbours(Board b, int col, int row) -> Board:
18 int r = math.max(0,row-1)
19 while r != math.min(b.height,row+2):
20 int c = math.max(0,col-1)
21 while c != math.min(b.width,col+2):
22 b = exposeSquare(b,c,r)
23 c = c + 1
24 r = r + 1
25 //
26 return b

This function does one of two things depending on the square being exposed. First, the square is
exposed by by creating an ExposedSquare and updating the board. Then, if that square is blank (i.e.
has a rank of zero), then it and its neighbours are recursively exposed by calling exposeSquare()

again:

1 // Recursively expose all valid neighbouring squares on the board
2 function exposeNeighbours(Board b, int col, int row) -> Board:
3 int r = math.max(0,row-1)
4 while r != math.min(b.height,row+2):

The final function we need for our implementation of minesweeper is that for determining when
the game is actually over and, furthermore, whether the player has won or not. This examines the
board to see whether there are any exposed squares which contain a bomb (in which case, the game
is over and the player lost). Furthermore, it checks whether or not every hidden square contains a
bomb (in which case, the game is over and the player won). This function is implemented as follows:

1 function isGameOver(Board b) -> (bool gameOver, bool playerWon):
2 bool isOver = true
3 bool hasWon = true
4 int i = 0
5 while i < |b.squares|:
6 Square sq = b.squares[i]
7 if sq is HiddenSquare && !sq.holdsBomb:

17

8 // Hidden square which doesn’t hold a bomb so game may not be over
9 isOver = false

10 else if sq is ExposedSquare && sq.holdsBomb:
11 // Exposed square which holds a bomb so game definitely over
12 isOver = true
13 hasWon = false
14 break
15 i = i + 1
16 //
17 return isOver, hasWon

This function iterates through every square on the board, and checks for two cases: firstly,
whether a hidden square exists which does not contain a bomb; secondly, whether there is an ex-
posed bomb. Note that, if an exposed bomb is found the loop exits immediately; however, if a hidden
square is found which doesn’t hold a bomb we must continue to examine the remaining squares to
see whether an exposed bomb exists or not.

4.4 Simple Text Interface
At this point, we can now put the game together and do some preliminary testing to check everything
is working as expected. To do this, we can run the code through some simple scenarios from the
console. Later, we can extend it with a Graphical User Interface for our game using the Java Swing
library.

The first and most important aspect of our simple text interface is a method for drawing the board
onto the screen. The following method does this using the print method from the std.io module:

1 method printBoard(Board board):
2 int row = 0
3 while row != board.height:
4 printRow(row,board)
5 row = row + 1
6 //
7

8 method printRow(int row, Board board):
9 // Print Side Wall

10 io.print("|")
11 int col = 0
12 while col != board.width:
13 printSquare(getSquare(board,col,row))
14 col = col + 1
15 // Print Side Wall
16 io.println("|")
17

18 method printSquare(Square sq):
19 if sq is HiddenSquare:
20 if sq.flagged:
21 io.print("P")
22 else:
23 io.print("X")
24 else if sq.holdsBomb:
25 io.print("*")
26 else if sq.rank == 0:
27 io.print(" ")
28 else:
29 io.print(sq.rank)

18

This method prints the board using a single character to represent each square, where ‘X’ repre-
sents hidden squares, numbers represent exposed squares with a given rank and space represents an
exposed blank square. For example, here is a simple board drawn in this way:

1 |11 |
2 |X1 111 |
3 |1212X1 111|
4 | 1X211 1XX|
5 | 111 2XX|

Here we can see, for example, that there must be a bomb at square (0, 1). Using this textual repre-
sentation of a board, we can begin to see the game working. To do this, we’ll provide a mechanical
notion of a player’s move (rather than, say, allowing the player to actually select his/her move). This
is done with the following type:

1 // expose signals the player exposes a square (true) or flags it (false)
2 type Move is { bool expose, int col, int row }
3

4 constant MOVES is [
5 {expose: true, col: 0, row: 0}, // First move, expose square 0,0
6 {expose: false, col: 0, row: 1}, // Second move, flag square 0,1
7 {expose: true, col: 2, row: 0} // Third move, expose square 2,0
8]

This defines a sequence of moves where the player exposes the square at (0, 0), then flags the
square at (0, 1) and, finally, exposes the square at (2, 0). To execute our sequence of moves on a
minesweeper Board we need to construct an outer method which first initialises a new Board, then
reads each Move in sequence from MOVES and apply’s the appropriate function (i.e. exposeSquare()
or flagSquare()) to the Board. The following illustrates the first part of a method for doing ex-
actly this:

1 function constructExampleBoard() -> (Board r):
2 Board board = Board(10,5)
3 // Place bombs on the board
4 board = setSquare(board,0,1,HiddenSquare(true,false))
5 board = setSquare(board,2,3,HiddenSquare(true,false))
6 board = setSquare(board,3,3,HiddenSquare(true,false))
7 //
8 return board

This method creates a new Board and places three bombs on to it. The main() method then
iterates through each Move, applies it to the Board and prints out the updated board at each step:

1 method applyMove(Board board, Move m) -> (Board r):
2 if m.expose:
3 io.println("Player exposes square")
4 return exposeSquare(board,m.col,m.row)
5 else:
6 io.println("Player flags square")
7 return flagSquare(board,m.col,m.row)
8

9 method main(ascii.string[] args):
10 //
11 Board board = constructExampleBoard()
12 int i = 0
13 //
14 while i < |MOVES|:

19

15 board = applyMove(board,MOVES[i])
16 printBoard(board)
17 i = i + 1

We can now run this little program to check that our minesweeper program appears to be working
correctly. The output from doing so should look like this:

1 Player exposes square
2 |1XXXXXXXXX|
3 |XXXXXXXXXX|
4 |XXXXXXXXXX|
5 |XXXXXXXXXX|
6 |XXXXXXXXXX|
7 Player flags square
8 |1XXXXXXXXX|
9 |PXXXXXXXXX|

10 |XXXXXXXXXX|
11 |XXXXXXXXXX|
12 |XXXXXXXXXX|
13 Player exposes square
14 |11 |
15 |P1 111 |
16 |X223X1 |
17 |XXXXX311 |
18 |XXXXXXX1 |

From this, it certainly seems that the program is working correctly. Note, however, that this is only
one test and not enough to be completely certain. Furthermore, we would want to extend our loop
above to check whether the game is over and the player has won or lost.

4.5 Graphical User Interface
At this point, we’re now going to outline how one can go about turning this code into a real game
of minesweeper using a Graphical User Interface (GUI). Since, at the time of writing, the Whiley
language has no support for graphical interfaces we instead recommend implementing the GUI in
Java using Swing, and then connect that to our Whiley minesweeper code. Here is how our final
implementation of the minesweeper game using a Java GUI looks:

In order to connect the Java GUI with our Whiley program, we need to use the Foreign Function
Interface (see Appendix A for more on this). The essential idea is that, by marking our functions with
the modifier export, they are visible to Java and can be called directly from Java Code. In addition
to providing a Graphical User Interface the Java code also provides a mechanism to generate random
numbers, allowing us to randomly place bombs on the board.

Finally, complete code for minesweeper game can be downloaded from GitHub here:

20

http://github.com/Whiley/WyBench/tree/master/src/107_minesweeper

This includes both the simple text interface and a Java-based Graphical User Interface. The game is
very playable and quite fun!

21

http://github.com/Whiley/WyBench/tree/master/src/107_minesweeper

5 Verification
As discussed in the introduction, an important feature of Whiley is verification. That is made up of
two aspects: firstly, the ability to write specifications for functions and methods in Whiley; secondly,
the ability of the compiler to check the body of a function or method meets its specification.

Unfortunately, specification is not always straightforward and can require considerable attention
to detail. Nevertheless, with practice, it can easily fit into the routine of day-to-day development. In
this section, we’ll explore the basics of verification in Whiley using some small examples. In the
following sections, we’ll look at larger and more realistic examples.

5.1 Preconditions and Postconditions
A precondition is a condition over the parameters of a function that is required to be true when
the function is called. The body of the function can then use this to make assumptions about the
possible values of the parameters. Likewise, a postcondition is a condition over the return values
of a function which is required to be true after the function is called. As a very simple example,
consider the following function which accepts a positive integer and returns a non-negative integer
(i.e. natural number):

1 function decrement(int x) -> (int y)
2 // Parameter x must be greater than zero
3 requires x > 0
4 // Return must be greater or equal to zero
5 ensures y >= 0:
6 //
7 return x - 1

Here, the requires and ensures clauses define the function’s precondition and postcondi-
tion. With verification enabled, the Whiley compiler will verify that the implementation of this
function meets its specification. In fact, we can see this for ourselves by manually construct-
ing an appropriate verification condition (that is, a logical condition whose truth establishes that
the implementation meets its specification). In this case, the appropriate verification condition is
x > 0 ==> x-1 >= 0. Unfortunately, although constructing a verification condition by hand was
possible in this case, in general it’s difficult if not impossible for more complex functions.

The Whiley compiler reasons about functions by exploring the different control-flow paths through
their bodies. Furthermore, as it learns more about the variables used in the function, it automatically
takes this into account. For example:

1 function abs(int x) -> (int y)
2 // Return value cannot be negative
3 ensures y >= 0:
4 //
5 if x >= 0:
6 return x
7 else:
8 return -x

The Whiley compiler verifies that the implementation of this function meets its specification. At
this point, it is worth considering in more detail what this really means. Since the Whiley compiler
performs verification at compile-time, it does not consider specific values when reasoning about a
function’s implementation. Instead, it considers all possible input values for the function which sat-
isfy its precondition. In other words, when the Whiley compiler verifies a function’s implementation
meets its specification, this means it does so for all possible input values.

22

5.2 Data Type Invariants
The above illustrates a function specification given through explicit pre- and post-conditions. How-
ever, we may also employ constrained types to simplify it as follows:

1 type nat is (int n) where n >= 0
2 type pos is (int p) where p > 0
3

4 function f(pos x) -> (nat n)
5 // Return must differ from parameter
6 ensures n != x:
7 //
8 return x-1

Here, the type declaration includes a where clause constraining the permissible values for the
type. Thus, nat defines the type of non-negative integers (i.e. the natural numbers). Likewise,
pos gives the type of positive integers and is implicitly a subtype of nat (since the constraint on
pos implies that of nat). We consider that good use of constrained types is critical to ensuring that
function specifications remain as readable as possible.

The notion of type in Whiley is more fluid than found in typical languages. In particular, if two
types T1 and T2 have the same underlying type, then T1 is a subtype of T2 iff the constraint on T1
implies that of T2. Consider the following:

1 type anat is (int x) where x >= 0
2 type bnat is (int x) where 2*x >= x
3

4 function f(anat x) -> bnat:
5 return x

In this case, we have two alternate (and completely equivalent) definitions for a natural number
(we can see that bnat is equivalent to anat by subtracting x from both sides). The Whiley compiler
is able to reason that these types are equivalent and statically verifies that this function is correct.

5.3 Quantification
The pre/post-conditions and invariants we have seen above were for constraining primitive types.
But, what if we want to say constrain all elements in collection? In that case, we need to use a
quantifier, as this allows us to iterate all elements in a collection. Suppose we wanted to define the
type of all integer arrays whose elements are non-negative. We can do this use the universal all
quantifier in Whiley like so:

1 type ArrayOfNats is (int[] items)
2 // every x in items must be greater-or-equal-to zero
3 where all { i in 0..|items| | items[i] >= 0 }

The invariant given in the where clause simply states that every element in the array must
greater-or-equal-to zero. The all quantifier is normally read as “for all”.

Similarly, we could rewrite the above using an existential quantifier. Unlike a universal quantifier
(which applies to all elements) an existential quantifier applies to just one element. We can rewrite
our ArrayOfNats data type using the some quantifier in Whiley, like so:

1 type ArrayOfNats is (int[] items)
2 // does not exist an x in items where is less-than zero
3 where !some { i in 0..|items| | items[i] < 0 }

23

The some requires that there is one (or more) elements which meet the criteria, and is normally
read as “there exists”. Thus, a literal reading of the above invariant would be: it is not the case that
there exists an element in items where x < 0.

5.4 Loop Invariants
A loop invariant is a property which holds before and after each iteration of the loop. There are three
key points about loop invariants:

1. The loop invariant must hold on entry to the loop.

2. Assuming the loop invariant holds at the start of the loop body (along with the condition), it
must hold at the end.

3. The loop invariant (along with the negated condition) can be assumed to hold immediately
after the loop.

To illustrate these three aspects, we’ll use some simple loop examples. For example, consider
the following example:

1 function f(int x) -> (int y)
2 // return cannot be negative
3 ensures y >= 0:
4 //
5 int i = 0
6 while i < x where i > 0:
7 i = i + 1
8 //
9 return i

Loop invariants in Whiley are indicated by the where clause. Thus, in the above example, the
loop invariant is “i > 0”. Compiling the above program with verification enabled will fail with an
error. This is because the loop invariant does not hold on entry to the loop (item 1 above).

5.5 Strategies for Loop Invariants
Loop invariants can be tricky to get right, and there are some useful tricks which can simplify things.
We’ll now consider some examples to illustrate this.

Example 1. Summing over an array of natural numbers is guaranteed to produce a natural number.
The following Whiley program illustrates this:

1 type nat is (int x) where x >= 0
2

3 function sum(nat[] items) -> nat:
4 int r = 0
5 int i = 0
6 //
7 while i < |items| where i >= 0 && r >= 0:
8 r = r + items[i]
9 i = i + 1

10 //
11 return r

The Whiley compiler statically verifies that sum() does indeed meet this specification. This is
true in Whiley because integer arithmetic is unbounded — meaning it does not suffer from overflow
as other languages do (e.g. Java). The loop invariant is necessary to help the Whiley compiler verify

24

this function. However, we can avoid the need for a loop invariant by declaring variables i and r

more precisely:

1 function sum(nat[] items) -> nat:
2 nat r = 0
3 nat i = 0
4 //
5 while i < |items|:
6 // ...

This time, we have declared the variables i and r as having type nat. The Whiley compiler will
now enforce the nat property for i and r at all points in the function, and the loop invariant is no
longer required.

Example 2. Generally speaking, the loop condition and invariant are used independently to in-
crease knowledge. However, sometimes they need to be used in concert. Consider the following
function for filling all elements of an array from a given position with a given value:

1 function fill(int[] items, int start, int value) -> (int[] r)
2 // Cannot start from negative index!
3 requires start >= 0
4 // Returned array must have same number of elements
5 ensures |r| == |items|:
6 //
7 int i = start
8 while i < |items|:
9 items[i] = value

10 i = i + 1
11 //
12 return items

This example is surprisingly challenging to verify. What we must do is ensure that the verifier
knows the size of items is unchanged. 1 To do this, we introduce a ghost variable which holds its
original size:

1 ...
2 int size = |items|
3 while i < |items| where |items| == size:
4 ...

The variable size is referred to as a ghost variable because it is not needed for the implementa-
tion itself; rather it is needed purely to aid verification.

5.6 Function Invocation
To keep verification tractable, the Whiley compiler verifies each function in a program one at a time,
independently of others.2 Thus, when verifying a given function, it assumes that all other functions
correctly meet their specification. Of course, if this is not the case, then this will eventually be
discovered as the compiler progresses through the program. For example, consider this program:

1 function f(int x) -> (int y)
2 // Return cannot be negative
3 ensures y >= 0:
4 //

1Whilst it is obvious to us that its size cannot change, this is unfortunately not (yet) obvious to the verifier.
2This corresponds to performing an intra-procedural analysis, compared with a more involved inter-procedural analysis.

25

5 return x
6

7 function g() -> (int y)
8 // Return cannot be negative
9 ensures y >= 0:

10 //
11 return f(1)

This program will not verify because the implementation of f() does not meet its specification.
For example, f(-1) gives -1 but the post-condition for f() allows only non-negative integers to
be returned. However, the Whiley compiler will verify that the implementation of g() meets its
specification as, when doing this, it assumes that f() meets it specification.

5.7 Explicit Assumptions
In many cases it is possible to sufficiently encode a function’s meaning within its specification to al-
low a program to verify. However, occasionally, what we need is to difficult for the Whiley compiler
to handle. A good example is the sum() function, which we can try to specify as follows:

1 function sum(int[] xs, int start) -> (int r)
2 requires |xs| > 0 && start >= 0 && start <= |xs|
3 // Base case: array of size 1
4 ensures |xs| == 1 ==> r == xs[0]
5 // General case: array of size greater than 1
6 ensures |xs| > 1 ==> r == xs[0] + sum(xs,start+1):
7 // ...

Here, we have carefully encoded the meaning of sum() within its specification. Unfortunately,
at the time of writing, the Whiley compiler cannot reason accurately about this specification, and
this makes exploiting known mathematical properties in subsequent specifications impossible. For
example, the following illustrates a simple function for reversing a list:

1 // Rotate head item to back of array
2 function reverse(int[] xs) -> (int[] ys)
3 // Permutation does not change sum
4 ensures |xs| > 0 ==> sum(xs,0) == sum(ys,0):
5 //
6 int i = 0
7 int[] zs = xs
8 //
9 while i < |xs| where i >= 0 && |xs| == |zs|:

10 int j = |xs| - (i+1)
11 xs[i] = zs[j]
12 return xs

Unfortunately, there is no hope to automatically verify the seemingly straightforward property
that the sum is preserved by this function. Instead, one can use an assume statement in Whiley
to override the verifier. Such a statement provides a way to instruct the verifier to blindly assume
something holds. For this example, we have:

1 ..
2 assume |xs| == 0 || sum(xs) == sum(zs)
3 return xs

Placing this before the return statement allows the verifier to pass reverse(). Of course, the
use of assume statements is potentially unsafe and relies on correct judgement.

26

6 Example: IndexOf Function
To better illustrate verification in Whiley, we’ll develop the specification for a slightly more chal-
lenging function. This is the indexOf() function, described as follows:

1 // Return the lowest index in the items array which equals the given item.
2 // If no such index exists, returns null.
3 function indexOf(int[] items, int item) -> int|null:
4 ...

This is a common function found in the standard libraries of many programming languages. The
body of the function examines each element of the items array and check whether or not it equals
item. To start with, we won’t worry too much about the body of the indexOf() function. Instead,
we’ll progressively build up the specification until we are happy with it. Then, we’ll give an imple-
mentation of the function which meets this specification.

To specify this function, we want to ensure three properties:

1. If the return is an integer i, then items[i] == item.

2. If the return is null, there is no index j where items[j] == item.

3. If the return is an integer i, then there is no index j where j < i and items[j] == item.

These properties determine how a correct implementation of the indexOf() function should
behave. We refer to them as the specification of the indexOf() function.

6.1 Specifying Property 1 — Return Valid Index
The first of the above properties is the easiest, so lets start by specifying that in Whiley. At the same
time, we’ll also give an initial implementation which satisfies this partial specification:

1 function indexOf(int[] items, int item) -> (int|null i)
2 // If return value is an int i, then items[i] == item
3 ensures i is int ==> items[i] == item:
4 //
5 if |items| > 0 && items[0] == item:
6 return 0
7 else:
8 return null

Here, we can see property (1) above written as an ensures clause in Whiley. In particular, the
phrase “the return value is an integer” is translated into the condition “i is int”. Likewise, the
implication operator (i.e. ==>) is used to say “If ... then ...”. We’ve also given an initial implemen-
tation for the indexOf() function which simply checks whether or not items[0] == item. This
implementation meets the specification we have so far although, obviously, this is an incomplete
implementation of the indexOf function!

6.2 Specifying Property 2 — Return Null if No Match
Property (2) from our list above is more difficult to specify, because it requires quantification. There
are several quantifiers available in Whiley, including: all, which allows us to say “for all elements
in an array something is true”; and no, which allows us to say “there is no element in the array where
something is true”.

In Whiley, we can express property (2) from above in several different ways. The most direct
translation would be:

27

1 ...
2 // If return is null, then for all j we have items[j] != item
3 ensures i is null ==> all { j in 0..|items| | items[j] != item }:
4 ...

Here, the expression |items| gives the length of the items array, whilst the range expression
0..|items| returns an array of consecutive integers from 0 up to, but not including, |items|.

6.3 Specifying Property 3 — Return Least Index
Property (3) from our array above is similar to property (2), except that we not considering all
elements of items:

1 ...
2 // If return is an int i, then no index j where j < i and items[j] == item
3 ensures i is int ==> all { j in 0 .. i | items[j] != item }:

6.4 Working Implementation
At this point, we can now give the complete specification for the indexOf() function, along with
an initial implementation:

1 function indexOf(int[] items, int item) -> (int|null r)
2 // If return is an int r, then items[r] == item
3 ensures r is int ==> items[r] == item
4 // If return is null, then no element in items matches item
5 ensures r is null ==> all { j in 0..|items| | items[j] != item }
6 // If return is an int i, then no index j where j < i and items[j] == item
7 ensures r is int ==> all { j in 0 .. r | items[j] != item }:
8 //
9 int i = 0

10 while i < |items|:
11 if items[i] == item:
12 return i
13 i = i + 1
14 //
15 return null

The implementation of indexOf() given above meets the function’s specification. Unfortu-
nately, whilst this is true, the Whiley compiler needs help to determine this. Figure 2 illustrates what
happens when we compile the above code with verification enabled.

6.5 Verified Implementation
Although our implementation of indexOf() given above is correct, it currently does not verify.
Although this distinction may seem unimportant, it goes to the heart of what verification is about.
That is, we know the implementation of indexOf() is correct because we, as humans, have looked
at it and believe it is. Whilst may be a reasonable approach for small examples, it certainly is not for
larger and more complex programs. Humans are fallible and we can easily believe something is true
when it is not. Therefore, we want a mechanical system which can examine a program and report
“Yes, I agree that this is correct”. Whiley provides such a system when verification is enabled.

Unfortunately, Whiley is not as smart as a human and often there will be things we know that
it does not. In such cases, we need to help Whiley by adding hints into our programs. In this
case, we need to add some loop invariants (recall §5.4) to help Whiley verify our implementation of

28

Figure 2: Illustrating our first working version of the indexOf function being compiled with verifi-
cation enabled. The compiler is reporting an error stating “index out of bounds (negative)”. This is
because the compiler believes i may be negative at this point. Although we know this is not true,
we must write a loop invariant to help the compiler see this.

indexOf(). The first part of the loop invariant we need is straightforward. Since i is modified in
the loop, we need am invariant to ensure i >= 0 when items[i] is accessed:

1 ...
2 i = 0
3 while i < |items| where i >= 0:
4 ...
5 i = i + 1

We can see that this invariant holds on entry to the loop (i.e. since i = 0 on entry). Furthermore, if
i >= 0 then i+1 >= 0 follows and, hence, the loop invariant holds after each iteration.

29

Figure 3: A state-machine diagram for the microwave oven

7 Example: Microwave Oven
For the next case study, we examine the classic and well-known microwave oven problem [13]. In
essence, we have a microwave oven with a door and a heating element. An important safety condition
is that the heating element cannot be on when the door is open, to protect against burns. This example
is interesting, because it demonstrates that Whiley can operate effectively as a modelling language,
as well as a general-purpose programming language.

7.1 Overview
Figure 3 provides a state-machine diagram of the microwave oven. The microwave state has three
components: a heating element, which is set either on or off; a door which (via a sensor) is recorded
as either open or closed; and, finally, a timer value indicating how for many seconds heating should
occur.

In addition to the microwave state, a number of external events are permitted. First, a start button
is used to signal the microwave should begin heating; second, the door may be opened or closed;
finally, an internal clock is used to signal time passing (in one second intervals) to the state machine.

7.2 Microwave State
The state of the microwave is represented in Whiley using a record containing the main three com-
ponents, along with an appropriate invariant. The following illustrates:

1 type nat is (int x) where x >= 0
2

3 // First, define the state of the microwave.
4 type Microwave is ({
5 bool heatOn, // if true, the oven is cooking
6 bool doorOpen, // if true, the door is open
7 nat timer // timer setting (in seconds)
8 } m) where !m.doorOpen || !m.heatOn

30

Here, boolean values are used to represent the state of the heating element, and the door sensor,
whilst a natural number represents the timer value. The invariant states that either the door is closed,
or the heating element is off.

7.3 Events
Events can be modelled in Whiley using functions which map one microwave state to another. Here
are the two functions representing the open and close events:

1 function doorClosed(Microwave m) -> Microwave
2 requires m.doorOpen:
3 //
4 m.doorOpen = false
5 return m
6

7 // A door opened event is triggered when the sensor detects that the door is opened.
8 function doorOpened(Microwave m) -> Microwave
9 requires !m.doorOpen:

10 //
11 m.doorOpen = true
12 m.heatOn = false
13 return m

Here, we can see that preconditions on the functions act as guards restricting when the events may
fire. The Whiley compiler will statically verify that the Microwave invariant holds for the turn value,
assuming it held for the parameter. Thus, failing to set m.heatOn = false in doorOpened()

results in a compile time error which signal that the safety property is not be enforced.
Likewise, we can specify the start event and, in doing so, we must ensure the safety property is

enforced. Specifically, when the heating element is turned on, the door must be closed:

1 // Signals that the ”start cooking” button has been pressed.
2 function startCooking(Microwave m) -> Microwave:
3 //
4 // Here, we check the all important safety propery
5 if !m.doorOpen:
6 m.heatOn = true
7 return m

Here we can see that, if the door is open when the start button is pressed, nothing happens. Again,
failing to check whether the door is open in startCooking() results in a compile time error which
signal that the safety property is not be enforced.

31

Appendix

A Foreign Function Interface
The Foreign Function Interface (FFI) provides a mechanism to enable code written in Whiley to
interact with code written in another programming language. In this section, we will discuss those
mechanisms provided in Whiley for this purpose. Of course, the Whiley system cannot make any
guarantees about such external code and care must be taken to ensure it treats types and specifications
correctly.

A.1 Overview
The foreign function interface represents a boundary between internal (i.e. Whiley) code and exter-
nal code written in other (i.e. foreign) languages. Whiley provides two modifiers for functions and
methods which allow information to flow across this boundary. These are:

• The native modifier, which declares a function or method which is implemented in a foreign
language. That is, a function or method whose implementation is written in another language.
Code written in Whiley can call this function, and the compiler is responsible for correctly
routing this to the actual function body.

• The export modifier, which declares a function or method that is visible to foreign code.
That is, a function or method which may be called from foreign code. This provides a way for
foreign code to invoke Whiley function and methods.

These modifiers provide two different mechanisms for allowing information to flow between
code written in Whiley and code written in a foreign language. As an example, recall the Minesweeper
example from §4. Suppose we wanted to implement a Graphical User Interface for our minesweeper
game in Java. There are two ways we could approach this:

• Whiley as “Master”. In this case, the Whiley code is considered the primary implementa-
tion and provides the entry point to the application. In contrast, the Java code is consider
subservient and is always called from Whiley.

• Whiley as “Slave”. In this case, things are the other way around. The Java code is considered
the primary implementation and provides the application’s entry point. The Whiley code, on
the other hand, simply provides supporting functions and methods for this.

For this particular situation, it probably makes most sense to follow the “Whiley as Slave” ap-
proach. This makes sense if we view our completed Minesweeper game as an instance of the Model-
View-Controller (MVC) pattern. According to this, the Whiley implementation of Minesweeper
illustrated in §4 corresponds to the model. The Graphical User Interface would then correspond to
the view.

B Verification Conditions
Talk about how to generate and see verification conditions.

References
[1] Franco Barbanera and Mariangiola Dezani-Cian Caglini. Intersection and union types. In In

Proc. TACS, pages 651–674, 1991.

[2] A. Igarashi and H. Nagira. Union types for object-oriented programming. Journal of Object
Technology, 6(2), 2007.

32

[3] Tony Hoare. Null references: The billion dollar mistake, presentation at qcon, 2009.

[4] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[5] Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie Hendren, and Clark Verbrugge. A
framework for optimizing Java using attributes. In Proceedings of the confererence on Com-
piler Construction (CC), pages 334–554, 2001.

[6] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of the ACM conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 302–312. ACM Press, 2003.

[7] T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null types for Java. Journal
of Object Technology, 6(9):455–475, 2007.

[8] Maciej Cielecki, Jȩdrzej Fulara, Krzysztof Jakubczyk, and Lukasz Jancewicz. Propagation of
JML non-null annotations in Java programs. In Proceedings of the conference on Principles
and Practices of Programming in Java (PPPJ), pages 135–140. ACM Press, 2006.

[9] Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating the
nullity annotation burden. In Proceedings of the European Confereince on Object-Oriented
Programming (ECOOP), pages 227–247. Springer, 2007.

[10] Chris Male, David J. Pearce, Alex Potanin, and Constantine Dymnikov. Java bytecode veri-
fication for @NonNull types. In Proceedings of the confererence on Compiler Construction
(CC), pages 229–244, 2008.

[11] Laurent Hubert. A non-null annotation inferencer for java bytecode. In Proceedings of the
Workshop on Program Analysis for Software Tools and Engineering, pages 36–42. ACM, 2008.

[12] Laurent Hubert, Thomas Jensen, and David Pichardie. Semantic foundations and inference of
non-null annotations. In Proceedings of the International conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), pages 132–149. Springer-Verlag, 2008.

[13] Maritta Heisel. A Pragmatic Approach to Formal Specification, pages 41–62. Springer US,
Boston, MA, 1996.

33

	Introduction
	Objectives
	Installation

	Quick Walkthrough
	Booleans and Numbers
	Arrays
	Records
	Multiple Returns
	Strings and Characters

	Flexible Types
	Flow Typing
	Recursive Types
	Structural vs Nominal Types
	Coercions
	Subtyping

	Example: Minesweeper
	Squares
	Board
	Game Play
	Simple Text Interface
	Graphical User Interface

	Verification
	Preconditions and Postconditions
	Data Type Invariants
	Quantification
	Loop Invariants
	Strategies for Loop Invariants
	Function Invocation
	Explicit Assumptions

	Example: IndexOf Function
	Specifying Property 1 — Return Valid Index
	Specifying Property 2 — Return Null if No Match
	Specifying Property 3 — Return Least Index
	Working Implementation
	Verified Implementation

	Example: Microwave Oven
	Overview
	Microwave State
	Events

	Foreign Function Interface
	Overview

	Verification Conditions

